Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Res ; 28(1): 71, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36755351

RESUMO

BACKGROUND: Airway remodeling is an important pathological feature of chronic airway diseases, which leads to a progressive decline in lung function. The present study examined the anti-remodeling and anti- inflammatory effect of BIBF1000, a triple-tyrosine kinase inhibitor that targets VEGF, PDGF, and FGF receptor signaling in a mouse model of repeated ovalbumin (OVA) challenges. METHODS: Female Balb-c mice were immunized intraperitoneally on days 0 and 12 with 50 µg ovalbumin plus 1 mg of Al(OH)3 in 200 µl saline. Intranasal OVA challenges (20 µg/50 µl in PBS) were administered on days 26, 29, and 31, and were repeated twice a week for 3 months. Animals received vehicle or BIBF1000 (25 mg/kg, b.i.d.) through gavage from day 26 to the end of fourth month. On day 120, bronchoalveolar lavage (BAL) and lung tissue were collected for biochemical and immunohistological analysis. RESULTS: Compared to vehicle controls, treatment with BIBF1000 reduced the numbers of BAL eosinophils, macrophages, neutrophils, and lymphocytes by 70.0%, 57.9%, 47.5%, and 63.0%, respectively, and reduced IL-5 and IL-13 in BAL. Treatment with BIBF1000 reduced airway mucus secretion, peribronchial fibrosis, small airway, and pulmonary arterial wall thickness, compared to vehicle controls. Furthermore, treatment with BIBF1000 also reduced the expression of inflammatory mediators (TNF-α, IL-1ß, IL-5, IL-13, MMP-2, MMP-9, COX-2, and iNOS) and inhibited ERK and AKT phosphorylation. CONCLUSIONS: The protective effect afforded by triple-tyrosine kinase inhibition with BIBF1000 in reducing allergen-induced airway and arterial remodeling was associated with down-regulation of inflammatory mediators, as well as inhibition of ERK and AKT signaling pathways.


Assuntos
Alérgenos , Interleucina-13 , Remodelação Vascular , Animais , Feminino , Camundongos , Alérgenos/farmacologia , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Interleucina-13/metabolismo , Interleucina-5/metabolismo , Pulmão/patologia , Camundongos Endogâmicos BALB C , Ovalbumina , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , /farmacologia
2.
Nat Commun ; 12(1): 6798, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815397

RESUMO

G-protein-coupled receptors (GPCRs), especially chemokine receptors, play a central role in the regulation of T cell migration. Various GPCRs are upregulated in activated CD4 T cells, including P2Y10, a putative lysophospholipid receptor that is officially still considered an orphan GPCR, i.e., a receptor with unknown endogenous ligand. Here we show that in mice lacking P2Y10 in the CD4 T cell compartment, the severity of experimental autoimmune encephalomyelitis and cutaneous contact hypersensitivity is reduced. P2Y10-deficient CD4 T cells show normal activation, proliferation and differentiation, but reduced chemokine-induced migration, polarization, and RhoA activation upon in vitro stimulation. Mechanistically, CD4 T cells release the putative P2Y10 ligands lysophosphatidylserine and ATP upon chemokine exposure, and these mediators induce P2Y10-dependent RhoA activation in an autocrine/paracrine fashion. ATP degradation impairs RhoA activation and migration in control CD4 T cells, but not in P2Y10-deficient CD4 T cells. Importantly, the P2Y10 pathway appears to be conserved in human T cells. Taken together, P2Y10 mediates RhoA activation in CD4 T cells in response to auto-/paracrine-acting mediators such as LysoPS and ATP, thereby facilitating chemokine-induced migration and, consecutively, T cell-mediated diseases.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Receptores Purinérgicos P2Y/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Idoso , Animais , Comunicação Autócrina/imunologia , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Quimiocinas/metabolismo , Quimiotaxia de Leucócito/imunologia , Encefalomielite Autoimune Experimental/sangue , Feminino , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Humanos , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Esclerose Múltipla/sangue , Comunicação Parácrina/imunologia , Cultura Primária de Células , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y/genética , Proteína rhoA de Ligação ao GTP/metabolismo
3.
J Transl Med ; 19(1): 340, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34372885

RESUMO

BACKGROUND: To examine the effects of BI 1029539 (GS-248), a novel selective human microsomal prostaglandin E synthase-1 (mPGES-1) inhibitor, in experimental models of acute lung injury (ALI) and sepsis in transgenic mice constitutively expressing the mPGES1 (Ptges) humanized allele. METHODS: Series 1: Lipopolysaccharide (LPS)-induced ALI. Mice were randomized to receive vehicle, BI 1029539, or celecoxib. Series 2: Cecal ligation and puncture-induced sepsis. Mice were randomized to receive vehicle or BI 1029539. RESULTS: Series 1: BI 1029539 or celecoxib reduced LPS-induced lung injury, with reduction in neutrophil influx, protein content, TNF-ɑ, IL-1ß and PGE2 levels in bronchoalveolar lavage (BAL), myeloperoxidase activity, expression of mPGES-1, cyclooxygenase (COX)-2 and intracellular adhesion molecule in lung tissue compared with vehicle-treated mice. Notably, prostacyclin (PGI2) BAL concentration was only lowered in celecoxib-treated mice. Series 2: BI 1029539 significantly reduced sepsis-induced BAL inflammatory cell recruitment, lung injury score and lung expression of mPGES-1 and inducible nitric oxide synthase. Treatment with BI 1029539 also significantly prolonged survival of mice with severe sepsis. Anti-inflammatory and anti-migratory effect of BI 1029539 was confirmed in peripheral blood leukocytes from healthy volunteers. CONCLUSIONS: BI 1029539 ameliorates leukocyte infiltration and lung injury resulting from both endotoxin-induced and sepsis-induced lung injury.


Assuntos
Lesão Pulmonar Aguda , Sepse , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II , Prostaglandina-E Sintases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Pharmacol Res ; 104: 132-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26747401

RESUMO

Kinin B1 receptors are implicated in asthmatic airway inflammation. Here we tested this hypothesis by examining the anti-inflammatory effects of BI113823, a novel non-peptide orally active kinin B1 receptor antagonist in mice sensitized to ovalbumin (OVA). Male Balb-c mice were randomly assigned to four study groups: (1) control, (2) OVA+vehicle, (3) OVA+BI113823, (4) OVA+dexamethasone. Mice were sensitized intraperitoneally with 75µg ovalbumin on days 1 and 8. On days 15-17, mice were challenged intranasally with 50µg of ovalbumin. Mice received vehicle, BI113823, or dexamethasone (positive control) on days 16-18. On day 19, bronchoalveolar lavage (BAL) and lung tissue were collected for biochemical and immuno-histological analysis. Compared to controls treatment with BI113823 significantly reduced the numbers of BAL eosinophils, macrophages, neutrophils and lymphocytes by 58.3%, 61.1%, 66.4% and 56.0%, respectively. Mice treated with dexamethasone showed similar reductions in BAL cells. Treatment with BI113823 and dexamethasone also significantly reduced total protein content, IgE, TNF-α and IL-1ß in lavage fluid, reduced myeloperoxidase activity, mucus secretion in lung tissues, and reduced the expression of B1 receptors, matrix metalloproteinase (MMP)-2 and cyclooxygenase (COX)-2 compared to vehicle-treated mice. Only BI113823 reduced MMP-9 and inducible nitric oxide synthase (iNOS). BI113823 effectively reduced OVA-induced inflammatory cell, mediator and signaling pathways equal to or greater than that seen with steroids in a mouse asthma model. BI113823 might be useful in modulating inflammation in asthma.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Antagonistas de Receptor B1 da Bradicinina/uso terapêutico , Alérgenos , Animais , Anti-Inflamatórios/farmacologia , Asma/imunologia , Asma/metabolismo , Asma/patologia , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Contagem de Células , Ciclo-Oxigenase 2/imunologia , Dexametasona/farmacologia , Imunoglobulina E/imunologia , Interleucina-1beta/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metaloproteinase 2 da Matriz/imunologia , Camundongos Endogâmicos BALB C , Muco/metabolismo , Ovalbumina , Fator de Necrose Tumoral alfa/imunologia
5.
Crit Care Med ; 43(11): e499-507, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26468713

RESUMO

OBJECTIVES: This study was undertaken to examine the effects of BI113823, a potent small molecule orally active nonpeptide B1 receptor antagonist, in an experimental model of endotoxin-induced direct lung injury in mice and indirect lung injury and survival in cecal ligation and puncture-induced polymicrobial sepsis in rats. DESIGN: Experimental, prospective study. SETTING: University research laboratory. SUBJECTS: Male BALB/c mice and male Wistar rats. INTERVENTIONS: Series 1: acute lung injury was induced in mice by intratracheal injection of lipopolysaccharide. Mice were then randomly assigned to receive treatment of vehicle, BI113823, or dexamethasone. Bronchoalveolar lavage fluid and lung tissues were analyzed for inflammatory cell influx and various histologic variables. Series 2: sepsis was induced by cecal ligation and puncture in anesthetized rats. Animals were then randomly assigned to receive treatment of vehicle or BI113823. Experiments were terminated at 20 hours and 7 days following cecal ligation and puncture, respectively. MEASUREMENTS AND MAIN RESULTS: Series 1: treatment with BI113823 significantly reduced lipopolysaccharide-induced neutrophil influx in bronchoalveolar lavage fluid. The BI113823 group had significantly lower lung vascular permeability, lung water content, myeloperoxidase activity, lung apoptosis and lung injury scores, total protein content, and tumor necrosis factor-α and interleukin-1ß levels compared with vehicle controls. In addition, nuclear factor-κB phosphorylation, nuclear translocation, and cyclooxygenase-2 and inducible nitric oxide synthase expression in the lung were attenuated in BI113823-treated animals compared with vehicle controls. Series 2: BI113823 significantly reduced sepsis-induced macrophage recruitment, protein content, and tumor necrosis factor-α and interleukin-1ß levels in lavage fluid and also reduced lung water content and plasma levels of tumor necrosis factor-α and interleukin-6 compared with vehicle controls. Most importantly, treatment with BI113823 significantly improved survival following severe sepsis in rats. CONCLUSIONS: Administration of B1 receptor antagonist BI113823 significantly reduced endotoxin-induced direct lung injury and also reduced sepsis-induced lung inflammatory response. Most importantly, BI113823 improved survival following severe polymicrobial sepsis.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Bradicinina/antagonistas & inibidores , Citocinas/metabolismo , Dexametasona/uso terapêutico , Macrófagos/efeitos dos fármacos , Lesão Pulmonar Aguda/mortalidade , Lesão Pulmonar Aguda/fisiopatologia , Animais , Western Blotting , Bradicinina/administração & dosagem , Líquido da Lavagem Broncoalveolar/citologia , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Ratos , Ratos Wistar , Valores de Referência , Taxa de Sobrevida , Resultado do Tratamento
6.
Int J Biol Macromol ; 77: 1-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25748849

RESUMO

Post-menopausal wound care management is a substantial burden on health services, since there are an increased number of elderly populations linked with age-related delayed wound healing. The controlled estrogen replacement can accelerate healing of acute cutaneous wounds, linked to its potent anti-inflammatory activity. The electrospinning technique can be used to introduce the desired therapeutic agents to the nanofiber matrix. So here we introduce a new material for wound tissue dressing, in which a polyurethane-dextran composite nanofibrous wound dressing material loaded with ß-estradiol was obtained through electrospinning. Dextran can promote neovascularization and skin regeneration in chronic wounds. This study involves the characterization of these nanofibers and analysis of cell growth and proliferation to determine the efficiency of tissue regeneration on these biocomposite polymer nanofibrous scaffolds and to study the possibility of using it as a potential wound dressing material in the in vivo models.


Assuntos
Bandagens , Dextranos/química , Eletricidade , Estradiol/farmacologia , Nanofibras/química , Poliuretanos/química , Cicatrização/efeitos dos fármacos , Células 3T3-L1 , Animais , Coagulação Sanguínea/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Estradiol/química , Teste de Materiais , Camundongos , Pós-Menopausa , Ratos , Ratos Wistar , Regeneração/efeitos dos fármacos
7.
PLoS One ; 7(7): e39808, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808064

RESUMO

A decade since the availability of Mycobacterium tuberculosis (Mtb) genome sequence, no promising drug has seen the light of the day. This not only indicates the challenges in discovering new drugs but also suggests a gap in our current understanding of Mtb biology. We attempt to bridge this gap by carrying out extensive re-annotation and constructing a systems level protein interaction map of Mtb with an objective of finding novel drug target candidates. Towards this, we synergized crowd sourcing and social networking methods through an initiative 'Connect to Decode' (C2D) to generate the first and largest manually curated interactome of Mtb termed 'interactome pathway' (IPW), encompassing a total of 1434 proteins connected through 2575 functional relationships. Interactions leading to gene regulation, signal transduction, metabolism, structural complex formation have been catalogued. In the process, we have functionally annotated 87% of the Mtb genome in context of gene products. We further combine IPW with STRING based network to report central proteins, which may be assessed as potential drug targets for development of drugs with least possible side effects. The fact that five of the 17 predicted drug targets are already experimentally validated either genetically or biochemically lends credence to our unique approach.


Assuntos
Proteínas de Bactérias/metabolismo , Crowdsourcing , Sistemas de Liberação de Medicamentos/métodos , Genoma Bacteriano , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Sistemas de Liberação de Medicamentos/estatística & dados numéricos , Redes Reguladoras de Genes , Genômica , Interações Hospedeiro-Patógeno , Humanos , Mycobacterium tuberculosis/patogenicidade , Mapeamento de Interação de Proteínas , Proteoma , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA