Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
iScience ; 27(1): 108694, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38213620

RESUMO

An altered gut microbiota is associated with type 1 diabetes (T1D), affecting the production of short-chain fatty acids (SCFA) and glucose homeostasis. We previously demonstrated that enhancing serum acetate and butyrate using a dietary supplement (HAMSAB) improved glycemia in non-obese diabetic (NOD) mice and patients with established T1D. The effects of SCFA on immune-infiltrated islet cells remain to be clarified. Here, we performed single-cell RNA sequencing on islet cells from NOD mice fed an HAMSAB or control diet. HAMSAB induced a regulatory gene expression profile in pancreas-infiltrated immune cells. Moreover, HAMSAB maintained the expression of ß-cell functional genes and decreased cellular stress. HAMSAB-fed mice showed preserved pancreatic endocrine cell identity, evaluated by decreased numbers of poly-hormonal cells. Finally, SCFA increased insulin levels in human ß-like cells and improved transplantation outcome in NOD/SCID mice. Our findings support the use of metabolite-based diet as attractive approach to improve glucose control in T1D.

2.
JHEP Rep ; 5(9): 100811, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37575883

RESUMO

Obesity-related complications such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) are well-established risk factors for the development of hepatocellular carcinoma (HCC). This review provides insights into the molecular mechanisms that underlie the role of steatosis, hyperinsulinemia and hepatic inflammation in HCC development and progression. We focus on recent findings linking intracellular pathways and transcription factors that can trigger the reprogramming of hepatic cells. In addition, we highlight the role of enzymes in dysregulated metabolic activity and consequent dysfunctional signalling. Finally, we discuss the potential uses and challenges of novel therapeutic strategies to prevent and treat NAFLD/T2D-associated HCC.

3.
Mol Metab ; 69: 101681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707047

RESUMO

OBJECTIVES: Type 1 diabetes (T1D) is caused by progressive immune-mediated loss of insulin-producing ß-cells. Inflammation is detrimental to ß-cell function and survival, moreover, both apoptosis and necrosis have been implicated as mechanisms of ß-cell loss in T1D. The receptor interacting serine/threonine protein kinase 1 (RIPK1) promotes inflammation by serving as a scaffold for NF-κB and MAPK activation, or by acting as a kinase that triggers apoptosis or necroptosis. It is unclear whether RIPK1 kinase activity is involved in T1D pathology. In the present study, we investigated if absence of RIPK1 activation would affect the susceptibility to immune-mediated diabetes or diet induced obesity (DIO). METHODS: The RIPK1 knockin mouse line carrying a mutation mimicking serine 25 phosphorylation (Ripk1S25D/S25D), which abrogates RIPK1 kinase activity, was utilized to assess the in vivo role of RIPK1 in immune-mediated diabetes or diet induced obesity (DIO). In vitro, ß-cell death and RIPK1 kinase activity was analysed in conditions known to induce RIPK1-dependent apoptosis/necroptosis. RESULTS: We demonstrate that Ripk1S25D/S25D mice presented normal glucose metabolism and ß-cell function. Furthermore, immune-mediated diabetes and DIO were not different between Ripk1S25D/S25D and Ripk1+/+ mice. Despite strong activation of RIPK1 kinase and other necroptosis effectors (RIPK3 and MLKL) by TNF+BV6+zVAD, no cell death was observed in mouse islets nor human ß-cells. CONCLUSION: Our results contrast recent literature showing that most cell types undergo necroptosis following RIPK1 kinase activation. This peculiarity may reflect an adaptation to the inability of ß-cells to proliferate and self-renewal.


Assuntos
Diabetes Mellitus Tipo 1 , Proteínas Quinases , Camundongos , Animais , Humanos , Proteínas Quinases/metabolismo , Inflamação/metabolismo , Serina , Obesidade , Proteína Serina-Treonina Quinases de Interação com Receptores
4.
Nutrients ; 14(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36145242

RESUMO

The loss of functional pancreatic ß-cell mass is an important hallmark of both type 1 and type 2 diabetes. The RNA-binding protein NOVA1 is expressed in human and rodent pancreatic ß-cells. Previous in vitro studies indicated that NOVA1 is necessary for glucose-stimulated insulin secretion and its deficiency-enhanced cytokine-induced apoptosis. Moreover, Bim, a proapoptotic protein, is differentially spliced and potentiates apoptosis in NOVA1-deficient ß-cells in culture. We generated two novel mouse models by Cre-Lox technology lacking Nova1 (ßNova1-/-) or Bim (ßBim-/-) in ß-cells. To test the impact of Nova1 or Bim deletion on ß-cell function, mice were subjected to multiple low-dose streptozotocin (MLD-STZ)-induced diabetes or high-fat diet-induced insulin resistance. ß-cell-specific Nova1 or Bim deficiency failed to affect diabetes development in response to MLD-STZ-induced ß-cell dysfunction and death evidenced by unaltered blood glucose levels and pancreatic insulin content. In addition, body composition, glucose and insulin tolerance test, and pancreatic insulin content were indistinguishable between control and ßNova1-/- or ßBim-/- mice on a high fat diet. Thus, Nova1 or Bim deletion in ß-cells does not impact on glucose homeostasis or diabetes development in mice. Together, these data argue against an in vivo role for the Nova1-Bim axis in ß-cells.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Glicemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Humanos , Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Antígeno Neuro-Oncológico Ventral , Obesidade/etiologia , Obesidade/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estreptozocina
5.
Microbiome ; 10(1): 9, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045871

RESUMO

BACKGROUND: Short-chain fatty acids (SCFAs) produced by the gut microbiota have beneficial anti-inflammatory and gut homeostasis effects and prevent type 1 diabetes (T1D) in mice. Reduced SCFA production indicates a loss of beneficial bacteria, commonly associated with chronic autoimmune and inflammatory diseases, including T1D and type 2 diabetes. Here, we addressed whether a metabolite-based dietary supplement has an impact on humans with T1D. We conducted a single-arm pilot-and-feasibility trial with high-amylose maize-resistant starch modified with acetate and butyrate (HAMSAB) to assess safety, while monitoring changes in the gut microbiota in alignment with modulation of the immune system status. RESULTS: HAMSAB supplement was administered for 6 weeks with follow-up at 12 weeks in adults with long-standing T1D. Increased concentrations of SCFA acetate, propionate, and butyrate in stools and plasma were in concert with a shift in the composition and function of the gut microbiota. While glucose control and insulin requirements did not change, subjects with the highest SCFA concentrations exhibited the best glycemic control. Bifidobacterium longum, Bifidobacterium adolescentis, and vitamin B7 production correlated with lower HbA1c and basal insulin requirements. Circulating B and T cells developed a more regulatory phenotype post-intervention. CONCLUSION: Changes in gut microbiota composition, function, and immune profile following 6 weeks of HAMSAB supplementation were associated with increased SCFAs in stools and plasma. The persistence of these effects suggests that targeting dietary SCFAs may be a mechanism to alter immune profiles, promote immune tolerance, and improve glycemic control for the treatment of T1D. TRIAL REGISTRATION: ACTRN12618001391268. Registered 20 August 2018, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375792 Video Abstract.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Animais , Diabetes Mellitus Tipo 2/microbiologia , Suplementos Nutricionais , Ácidos Graxos Voláteis , Humanos , Camundongos
6.
Diabetes ; 71(4): 653-668, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044456

RESUMO

Type 1 diabetes (T1D) results from autoimmune destruction of ß-cells in the pancreas. Protein tyrosine phosphatases (PTPs) are candidate genes for T1D and play a key role in autoimmune disease development and ß-cell dysfunction. Here, we assessed the global protein and individual PTP profiles in the pancreas from nonobese mice with early-onset diabetes (NOD) mice treated with an anti-CD3 monoclonal antibody and interleukin-1 receptor antagonist. The treatment reversed hyperglycemia, and we observed enhanced expression of PTPN2, a PTP family member and T1D candidate gene, and endoplasmic reticulum (ER) chaperones in the pancreatic islets. To address the functional role of PTPN2 in ß-cells, we generated PTPN2-deficient human stem cell-derived ß-like and EndoC-ßH1 cells. Mechanistically, we demonstrated that PTPN2 inactivation in ß-cells exacerbates type I and type II interferon signaling networks and the potential progression toward autoimmunity. Moreover, we established the capacity of PTPN2 to positively modulate the Ca2+-dependent unfolded protein response and ER stress outcome in ß-cells. Adenovirus-induced overexpression of PTPN2 partially protected from ER stress-induced ß-cell death. Our results postulate PTPN2 as a key protective factor in ß-cells during inflammation and ER stress in autoimmune diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Animais , Apoptose/genética , Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Células Secretoras de Insulina/metabolismo , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética
7.
Mol Pharm ; 18(12): 4428-4436, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34649437

RESUMO

Type 1 diabetes develops in childhood and adolescence, with peak incidence in the early teenage years. There is an urgent need for an accurate method to detect insulin-producing ß-cells in patients that is not affected by alterations in ß-cell function. As part of our research program to design specific probes to measure ß-cell mass, we recently developed a novel insulin-binding peptide probe (IBPP) for the detection of ß-cells in vivo. Here, we applied our innovative method to show specific labeling of this IBPP to human and mouse fixed ß-cells in pancreatic islets. Importantly, we showed staining of human and mouse islets in culture without any negative functional or cell viability impact. Moreover, the IBPP-stained mouse islets after tail vein injection in vivo, albeit with batch differences in staining efficiency. In conclusion, we provide evidence showing that the IBPP can be used for future accurate detection of ß-cell mass in a variety of preclinical models of diabetes.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Células Cultivadas , Humanos , Insulina/análise , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Coloração e Rotulagem
8.
Oncogene ; 40(33): 5155-5167, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290399

RESUMO

Obesity affects more than 650 million individuals worldwide and is a well-established risk factor for the development of hepatocellular carcinoma (HCC). Oxidative stress can be considered as a bona fide tumor promoter, contributing to the initiation and progression of liver cancer. Indeed, one of the key events involved in HCC progression is excessive levels of reactive oxygen species (ROS) resulting from the fatty acid influx and chronic inflammation. This review provides insights into the different intracellular sources of obesity-induced ROS and molecular mechanisms responsible for hepatic tumorigenesis. In addition, we highlight recent findings pointing to the role of the dysregulated activity of BCL-2 proteins and protein tyrosine phosphatases (PTPs) in the generation of hepatic oxidative stress and ROS-mediated dysfunctional signaling, respectively. Finally, we discuss the potential and challenges of novel nanotechnology strategies to prevent ROS formation in obesity-associated HCC.


Assuntos
Carcinoma Hepatocelular , Humanos , Neoplasias Hepáticas , Estresse Oxidativo , Transdução de Sinais
9.
Diabetes ; 70(9): 2026-2041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34183374

RESUMO

Most obese and insulin-resistant individuals do not develop diabetes. This is the result of the capacity of ß-cells to adapt and produce enough insulin to cover the needs of the organism. The underlying mechanism of ß-cell adaptation in obesity, however, remains unclear. Previous studies have suggested a role for STAT3 in mediating ß-cell development and human glucose homeostasis, but little is known about STAT3 in ß-cells in obesity. We observed enhanced cytoplasmic expression of STAT3 in severely obese subjects with diabetes. To address the functional role of STAT3 in adult ß-cells, we generated mice with tamoxifen-inducible partial or full deletion of STAT3 in ß-cells and fed them a high-fat diet before analysis. Interestingly, ß-cell heterozygous and homozygous STAT3-deficient mice showed glucose intolerance when fed a high-fat diet. Gene expression analysis with RNA sequencing showed that reduced expression of mitochondrial genes in STAT3 knocked down human EndoC-ß1H cells, confirmed in FACS-purified ß-cells from obese STAT3-deficient mice. Moreover, silencing of STAT3 impaired mitochondria activity in EndoC-ß1H cells and human islets, suggesting a mechanism for STAT3-modulated ß-cell function. Our study postulates STAT3 as a novel regulator of ß-cell function in obesity.


Assuntos
Intolerância à Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Obesidade/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Genes Mitocondriais , Intolerância à Glucose/genética , Humanos , Insulina/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Obesidade/genética , Fator de Transcrição STAT3/genética
10.
Trends Endocrinol Metab ; 31(12): 905-917, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33160815

RESUMO

A common feature in the pathophysiology of different types of diabetes is the reduction of ß cell mass and/or impairment of ß cell function. Diagnosis and treatment of type 1 and type 2 diabetes is currently hampered by a lack of reliable techniques to restore ß cell survival, to improve insulin secretion, and to quantify ß cell mass in patients. Current new approaches may allow us to precisely and specifically visualize ß cells in vivo and provide viable therapeutic strategies to preserve, recover, and regenerate ß cells. In this review, we discuss recent protective approaches for ß cells and the advantages and limitations of current imaging probes in the field.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Animais , Humanos , Células Secretoras de Insulina/fisiologia
11.
Cell ; 175(5): 1289-1306.e20, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30454647

RESUMO

Obesity is a major driver of cancer, especially hepatocellular carcinoma (HCC). The prevailing view is that non-alcoholic steatohepatitis (NASH) and fibrosis or cirrhosis are required for HCC in obesity. Here, we report that NASH and fibrosis and HCC in obesity can be dissociated. We show that the oxidative hepatic environment in obesity inactivates the STAT-1 and STAT-3 phosphatase T cell protein tyrosine phosphatase (TCPTP) and increases STAT-1 and STAT-3 signaling. TCPTP deletion in hepatocytes promoted T cell recruitment and ensuing NASH and fibrosis as well as HCC in obese C57BL/6 mice that normally do not develop NASH and fibrosis or HCC. Attenuating the enhanced STAT-1 signaling prevented T cell recruitment and NASH and fibrosis but did not prevent HCC. By contrast, correcting STAT-3 signaling prevented HCC without affecting NASH and fibrosis. TCPTP-deletion in hepatocytes also markedly accelerated HCC in mice treated with a chemical carcinogen that promotes HCC without NASH and fibrosis. Our studies reveal how obesity-associated hepatic oxidative stress can independently contribute to the pathogenesis of NASH, fibrosis, and HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/patologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Hepatocelular/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Proteína Tirosina Fosfatase não Receptora Tipo 2/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Transdução de Sinais
13.
J Mol Biol ; 430(18 Pt B): 3041-3050, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30036494

RESUMO

Diabetes is a metabolic disorder affecting more than 400 million individuals and their families worldwide. The major forms of diabetes (types 1 and 2) are characterized by pancreatic ß-cell dysfunction and, in some cases, loss of ß-cell mass causing hyperglycemia due to absolute or relative insulin deficiency. The BCL-2 homology 3 (BH3)-only protein BIM has a wide role in apoptosis induction in cells. In this review, we describe the apoptotic mechanisms mediated by BIM activation in ß cells in obesity and both forms of diabetes. We focus on molecular pathways triggered by inflammation, saturated fats, and high levels of glucose. Besides its role in cell death, BIM has been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism in hepatocytes. BIM is both a key mediator of pancreatic ß-cell death and hepatic insulin resistance and is thus a potential therapeutic target for novel anti-diabetogenic drugs. We consider the implications and challenges of targeting BIM in the treatment of the disease.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fragmentos de Peptídeos , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas , Animais , Apoptose , Autoimunidade , Proteína 11 Semelhante a Bcl-2/antagonistas & inibidores , Proteína 11 Semelhante a Bcl-2/química , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamento farmacológico , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Obesidade/tratamento farmacológico , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Transdução de Sinais
14.
Cell Death Differ ; 25(1): 217-225, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29053141

RESUMO

BCL-2 proteins are known to engage each other to determine the fate of a cell after a death stimulus. However, their evolutionary conservation and the many other reported binding partners suggest an additional function not directly linked to apoptosis regulation. To identify such a function, we studied mice lacking the BH3-only protein BIM. BIM-/- cells had a higher mitochondrial oxygen consumption rate that was associated with higher mitochondrial complex IV activity. The consequences of increased oxygen consumption in BIM-/- mice were significantly lower body weights, reduced adiposity and lower hepatic lipid content. Consistent with reduced adiposity, BIM-/- mice had lower fasting blood glucose, improved insulin sensitivity and hepatic insulin signalling. Lipid oxidation was increased in BIM-/- mice, suggesting a mechanism for their metabolic phenotype. Our data suggest a role for BIM in regulating mitochondrial bioenergetics and metabolism and support the idea that regulation of metabolism and cell death are connected.


Assuntos
Adiposidade , Proteína 11 Semelhante a Bcl-2/fisiologia , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Animais , Proteína 11 Semelhante a Bcl-2/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Glucose/metabolismo , Hepatócitos/metabolismo , Resistência à Insulina , Fígado/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Oxirredução , Consumo de Oxigênio , Redução de Peso
15.
Biomacromolecules ; 18(12): 4249-4260, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29035554

RESUMO

Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the ß-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polímeros/química , Agregação Patológica de Proteínas/patologia , Amiloidose/patologia , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Nanopartículas/química
16.
Diabetes ; 66(12): 2973-2986, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28928277

RESUMO

The members of the BCL-2 family are crucial regulators of the mitochondrial pathway of apoptosis in normal physiology and disease. Besides their role in cell death, BCL-2 proteins have been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism. It remains unclear, however, whether these proteins have a physiological role in glucose homeostasis and metabolism in vivo. In this study, we report that fat accumulation in the liver increases c-Jun N-terminal kinase-dependent BCL-2 interacting mediator of cell death (BIM) expression in hepatocytes. To determine the consequences of hepatic BIM deficiency in diet-induced obesity, we generated liver-specific BIM-knockout (BLKO) mice. BLKO mice had lower hepatic lipid content, increased insulin signaling, and improved global glucose metabolism. Consistent with these findings, lipogenic and lipid uptake genes were downregulated and lipid oxidation enhanced in obese BLKO mice. Mechanistically, BIM deficiency improved mitochondrial function and decreased oxidative stress and oxidation of protein tyrosine phosphatases, and ameliorated activation of peroxisome proliferator-activated receptor γ/sterol regulatory element-binding protein 1/CD36 in hepatocytes from high fat-fed mice. Importantly, short-term knockdown of BIM rescued obese mice from insulin resistance, evidenced by reduced fat accumulation and improved insulin sensitivity. Our data indicate that BIM is an important regulator of liver dysfunction in obesity and a novel therapeutic target for restoring hepatocyte function.


Assuntos
Proteína 11 Semelhante a Bcl-2/fisiologia , Fígado Gorduroso/etiologia , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Fígado/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Animais , Células Cultivadas , Ativação Enzimática , Ácidos Graxos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
17.
Nat Commun ; 8(1): 490, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887564

RESUMO

Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in ß-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in ß-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in ß- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.


Assuntos
Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/metabolismo , Animais , Arginina/análogos & derivados , Arginina/farmacologia , AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Camundongos , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais
18.
J Mol Endocrinol ; 59(4): 325-337, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28827413

RESUMO

Type 1 diabetes (T1D) is characterized by the destruction of insulin-producing ß-cells by immune cells in the pancreas. Pro-inflammatory including TNF-α, IFN-γ and IL-1ß are released in the islet during the autoimmune assault and signal in ß-cells through phosphorylation cascades, resulting in pro-apoptotic gene expression and eventually ß-cell death. Protein tyrosine phosphatases (PTPs) are a family of enzymes that regulate phosphorylative signalling and are associated with the development of T1D. Here, we observed expression of PTPN6 and PTPN1 in human islets and islets from non-obese diabetic (NOD) mice. To clarify the role of these PTPs in ß-cells/islets, we took advantage of CRISPR/Cas9 technology and pharmacological approaches to inactivate both proteins. We identify PTPN6 as a negative regulator of TNF-α-induced ß-cell death, through JNK-dependent BCL-2 protein degradation. In contrast, PTPN1 acts as a positive regulator of IFN-γ-induced STAT1-dependent gene expression, which enhanced autoimmune destruction of ß-cells. Importantly, PTPN1 inactivation by pharmacological modulation protects ß-cells and primary mouse islets from cytokine-mediated cell death. Thus, our data point to a non-redundant effect of PTP regulation of cytokine signalling in ß-cells in autoimmune diabetes.


Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Animais , Morte Celular/genética , Morte Celular/imunologia , Expressão Gênica , Técnicas de Inativação de Genes , Marcação de Genes , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Proteínas Tirosina Fosfatases/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Chem Commun (Camb) ; 53(68): 9394-9397, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28745731

RESUMO

Aggregation of the highly amyloidogenic IAPP is endogenously inhibited inside beta-cell granules at millimolar concentrations. Combining in vitro experiments and computer simulations, we demonstrated that the stabilization of IAPP upon the formation of zinc-coordinated ion molecular complex with C-peptide might be important for the endogenous inhibition of IAPP aggregation.

20.
JCI Insight ; 1(10): e86065, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27699217

RESUMO

High-affinity self-reactive thymocytes are purged in the thymus, and residual self-reactive T cells, which are detectable in healthy subjects, are controlled by peripheral tolerance mechanisms. Breakdown in these mechanisms results in autoimmune disease, but antigen-specific therapy to augment natural mechanisms can prevent this. We aimed to determine when antigen-specific therapy is most effective. Islet autoantigens, proinsulin (PI), and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) were expressed in the antigen-presenting cells (APCs) of autoimmune diabetes-prone nonobese diabetic (NOD) mice in a temporally controlled manner. PI expression from gestation until weaning was sufficient to completely protect NOD mice from diabetes, insulitis, and development of insulin autoantibodies. Insulin-specific T cells were significantly diminished, were naive, and did not express IFN-γ when challenged. This long-lasting effect from a brief period of treatment suggests that autoreactive T cells are not produced subsequently. We tracked IGRP206-214-specific CD8+ T cells in NOD mice expressing IGRP in APCs. When IGRP was expressed only until weaning, IGRP206-214-specific CD8+ T cells were not detected later in life. Thus, anti-islet autoimmunity is determined during early life, and autoreactive T cells are not generated in later life. Bolstering tolerance to islet antigens in the perinatal period is sufficient to impart lasting protection from diabetes.


Assuntos
Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/prevenção & controle , Proinsulina/uso terapêutico , Animais , Células Apresentadoras de Antígenos/citologia , Autoantígenos , Linfócitos T CD8-Positivos/citologia , Glucose-6-Fosfatase/metabolismo , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA