Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
ACS Nano ; 18(13): 9331-9343, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498702

RESUMO

Surface acoustic waves (SAWs) convey energy at subwavelength depths along surfaces. Using interdigital transducers (IDTs) and opto-acousto-optic transducers (OAOTs), researchers have harnessed coherent SAWs with nanosecond periods and micrometer localization depth for various applications. These applications include the sensing of small amount of materials deposited on surfaces, assessing surface roughness and defects, signal processing, light manipulation, charge carrier and exciton transportation, and the study of fundamental interactions with thermal phonons, photons, magnons, and more. However, the utilization of cutting-edge OAOTs produced through surface nanopatterning techniques has set the upper limit for coherent SAW frequencies below 100 GHz, constrained by factors such as the quality and pitch of the surface nanopattern, not to mention the electronic bandwidth limitations of the IDTs. In this context, unconventional optically controlled nanotransducers based on cleaved superlattices (SLs) are here presented as an alternative solution. To demonstrate their viability, we conducted proof-of-concept experiments using ultrafast lasers in a pump-probe configuration on SLs made of alternating AlxGa1-xAs and AlyGa1-yAs layers with approximately 70 nm periodicity and cleaved along their growth direction to produce a periodic nanostructured surface. The acoustic vibrations, generated and detected by laser beams incident on the cleaved surface, span a range from 40 to 70 GHz, corresponding to the generalized surface Rayleigh mode and bulk modes within the dispersion relation. This exploration shows that, in addition to SAWs, cleaved SLs offer the potential to observe surface-skimming longitudinal and transverse acoustic waves at GHz frequencies. This proof-of-concept demonstration below 100 GHz in nanoacoustics using such an unconventional platform might be useful for realizing sub-THz to THz coherent surface acoustic vibrations in the future, as SLs can be epitaxially grown with atomic-scale layer width and quality.

3.
Photoacoustics ; 33: 100547, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021283

RESUMO

Time-domain Brillouin scattering (TDBS) is a developing technique for imaging/evaluation of materials, currently used in material science and biology. Three-dimensional imaging and characterization of polycrystalline materials has been recently reported, demonstrating evaluation of inclined material boundaries. Here, the TDBS technique is applied to monitor the destruction of a lithium niobate single crystal upon non-hydrostatic compression in a diamond anvil cell. The 3D TDBS experiments reveal, among others, modifications of the single crystal plate with initially plane-parallel surfaces, caused by non-hydrostatic compression, the laterally inhomogeneous variations of the plate thickness and relative inclination of opposite surfaces. Our experimental observations, supported by theoretical interpretation, indicate that TDBS enables the evaluation of materials interface orientation/inclination locally, from single point measurements, avoiding interface profilometry. A variety of observations reported in this paper paves the way to further expansion of the TDBS imaging use to analyze fascinating processes/phenomena occurring when materials are subjected to destruction.

4.
Photoacoustics ; 33: 100563, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37953941

RESUMO

A theory has been developed to interpret time-domain Brillouin scattering (TDBS) experiments involving coherent acoustic pulse (CAP) and light pulse beams propagating at an angle to each other. It predicts the influence of the directivity pattern of their acousto-optic interaction on TDBS signals when heterodyne detection of acoustically scattered light is in backward direction to incident light. The theory reveals relationships between the carrier frequency, amplitude and duration of acoustically induced "wave packets" in light transient reflectivity signals, and factors such as CAP duration, widths of light and sound beams, and their interaction angle. It describes the transient dynamics of these wave packets when the light and CAP encounter material interfaces, and how the light scattering by the incident CAP transforms into scattering by the reflected and transmitted CAPs. The theory suggests that single-point TDBS experiments can determine not only depth positions of buried interfaces but also their local inclinations/orientations.

5.
Nano Lett ; 23(17): 8186-8193, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37603607

RESUMO

The increasing role of two-dimensional (2D) devices requires the development of new techniques for ultrafast control of physical properties in 2D van der Waals (vdW) nanolayers. A special feature of heterobilayers assembled from vdW monolayers is femtosecond separation of photoexcited electrons and holes between the neighboring layers, resulting in the formation of Coulomb force. Using laser pulses, we generate a 0.8 THz coherent breathing mode in MoSe2/WSe2 heterobilayers, which modulates the thickness of the heterobilayer and should modulate the photogenerated electric field in the vdW gap. While the phonon frequency and decay time are independent of the stacking angle between the MoSe2 and WSe2 monolayers, the amplitude decreases at intermediate angles, which is explained by a decrease in the photogenerated electric field between the layers. The modulation of the vdW gap by coherent phonons enables a new technology for the generation of THz radiation in 2D nanodevices with vdW heterobilayers.

6.
Philos Trans A Math Phys Eng Sci ; 381(2258): 20230016, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37634530

RESUMO

Germanium nitride, having cubic spinel structure, γ-Ge3N4, is a wide band-gap semiconductor with a large exciton binding energy that exhibits high hardness, elastic moduli and elevated thermal stability up to approximately 700°C. Experimental data on its bulk and shear moduli (B0 and G0, respectively) are strongly limited, inconsistent and, thus, require verification. Moreover, earlier first-principles density functional calculations provided significantly scattering B0 values but consistently predicted G0 much higher than the so far available experimental value. Here, we examined the elasticity of polycrystalline γ-Ge3N4, densified applying high pressures and temperatures, using the techniques of laser ultrasonics (LU) and Brillouin light scattering (BLS) and compared with our extended first-principles calculations. From the LU measurements, we obtained its longitudinal- and Rayleigh wave sound velocities and, taking into account the sample porosity, derived B0 = 322(44) GPa and G0 = 188(7) GPa for the dense polycrystalline γ-Ge3N4. While our calculations underestimated B0 by approximately 17%, most of the predicted G0 matched well with our experimental value. Combining the LU- and BLS data and taking into account the elastic anisotropy, we determined the refractive index of γ-Ge3N4 in the visible range of light to be n = 2.4, similarly high as that of diamond or GaN, and matching our calculated value. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 1)'.

7.
Photoacoustics ; 30: 100459, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36852340

RESUMO

Time-domain Brillouin scattering (TDBS) is an all-optical experimental technique for investigating transparent materials based on laser picosecond ultrasonics. Its application ranges from imaging thin-films, polycrystalline materials and biological cells to physical properties such as residual stress, temperature gradients and nonlinear coherent nano-acoustic pulses. When the sample refractive index is spatially uniform and known in TDBS, analysis by windowed Fourier transforms allows one to depth-profile the sound velocity. Here, we present a new method in TDBS for extracting sound velocity without a knowledge of the refractive index, by use of probe light obliquely incident on a side face-as opposed to the usual top face-of the sample. We demonstrate this method using a fused silica sample with a titanium transducer film and map the sound velocity in the depth direction. In future, it should be possible to map the sound velocity distribution in three dimensions in inhomogeneous samples, with applications to the imaging of biological cells.

8.
Nano Lett ; 22(16): 6509-6515, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960261

RESUMO

Strain engineering can be used to control the physical properties of two-dimensional van der Waals (2D-vdW) crystals. Coherent phonons, which carry dynamical strain, could push strain engineering to control classical and quantum phenomena in the unexplored picosecond temporal and nanometer spatial regimes. This intriguing approach requires the use of coherent GHz and sub-THz 2D phonons. Here, we report on nanostructures that combine nanometer thick vdW layers and nanogratings. Using an ultrafast pump-probe technique, we generate and detect in-plane coherent phonons with frequency up to 40 GHz and hybrid flexural phonons with frequency up to 10 GHz. The latter arises from the periodic modulation of the elastic coupling of the vdW layer at the grooves and ridges of the nanograting. This creates a new type of a tailorable 2D periodic phononic nanoobject, a flexural phononic crystal, offering exciting prospects for the ultrafast manipulation of states in 2D materials in emerging quantum technologies.

9.
Sci Adv ; 8(33): eabn8007, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984884

RESUMO

Flexural oscillations of freestanding films, nanomembranes, and nanowires are attracting growing attention for their importance to the fundamental physical and optical properties and device applications of two-dimensional and nanostructured (meta)materials. Here, we report on the observation of short-time scale ballistic motion in the flexural mode of a nanomembrane cantilever, driven by thermal fluctuation of flexural phonons, including measurements of ballistic velocities and displacements performed with subatomic resolution, using a free electron edge-scattering technique. Within intervals <10 µs, the membrane moves ballistically at a constant velocity, typically ~300 µm/s, while Brownian-like dynamics emerge for longer observation periods. Access to the ballistic regime provides verification of the equipartition theorem and Maxwell-Boltzmann statistics for flexural modes and can be used in fast thermometry and mass sensing during atomic absorption/desorption processes on the membrane.

10.
Phys Rev Lett ; 128(15): 157401, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499885

RESUMO

The functionality of phonon-based quantum devices largely depends on the efficiency of the interaction of phonons with other excitations. For phonon frequencies above 20 GHz, generation and detection of the phonon quanta can be monitored through photons. The photon-phonon interaction can be enormously strengthened by involving an intermediate resonant quasiparticle, e.g., an exciton, with which a photon forms a polariton. In this work, we discover a giant photoelasticity of exciton-polaritons in a short-period superlattice and exploit it to detect propagating acoustic phonons. We demonstrate that 42 GHz coherent phonons can be detected with extremely high sensitivity in the time domain Brillouin oscillations by probing with photons in the spectral vicinity of the polariton resonance.

11.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35564309

RESUMO

We applied time-domain Brillouin scattering (TDBS) for the characterization of porogen-based organosilicate glass (OGS) films deposited by spin-on-glass technology and cured under different conditions. Although the chemical composition and porosity measured by Fourier-transform infrared (FTIR) spectroscopy and ellipsometric porosimetry (EP) did not show significant differences between the films, remarkable differences between them were revealed by the temporal evolution of the Brillouin frequency (BF) shift of the probe light in the TDBS. The observed modification of the BF was a signature of the light-induced modification of the films in the process of the TDBS experiments. It correlated to the different amount of carbon residue in the samples, the use of ultraviolet (UV) femtosecond probe laser pulses in our optical setup, and their intensity. In fact, probe radiation with an optical wavelength of 356 nm appeared to be effective in removing carbon residue through single-photon absorption processes, while its two-photon absorption might have led to the breaking of Si-CH3 bonds in the OSG matrix. The quantum chemical calculations confirmed the latter possibility. This discovery demonstrates the possibility of local modifications of OSG films with a nanometric resolution via nonlinear optical processes, which could be important, among other applications, for the creation of active surface sites in the area-selective deposition of atomic layers.

12.
Nanomaterials (Basel) ; 11(11)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835895

RESUMO

Wide-range continuous spatial variation of the film composition in lateral compositionally graded epitaxial films requires the development of high throughput measurement techniques for their local and non-destructive characterization with the highest possible spatial resolution. Here we report on the first application of the picosecond laser ultrasonics (PLU) technique for the evaluation of acoustical and optical parameters of lateral compositionally graded film, the Ba1-xSrxTiO3 (0 ≤ x ≤ 1) material library. The film was not dedicatedly prepared for its opto-acousto-optic evaluation by PLU, exhibiting significant lateral variations in thickness and surface roughness. Therefore, the achieved measurements of the sound velocity and of the optical refractive index, and characterization of the surface roughness confirm the robustness of the PLU technique for thin film evaluation. We hope that the first measurements of the acoustical and optical properties of epitaxial grown Ba1-xSrxTiO3 (0 ≤ x ≤ 1) by PLU technique accomplished here provide the parameters required for more extended predictive design of the phononic, photonic and phoxonic mirrors and cavities with superior properties/functionalities for novel multifunctional nanodevices.

13.
Photoacoustics ; 23: 100286, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34430200

RESUMO

Non-invasive fast imaging of grain microstructure of polycrystalline ceria with sub-micrometric spatial resolution is performed via time-domain Brillouin scattering. The propagation of a nanoacoustic pulse is monitored down to 8 µm deep in a 30 × 30 µm2 area. Grains boundaries are reconstructed in three-dimensions via a two-step processing method, relying on the wavelet synchro-squeezed transform and the alphashape algorithm. Imaging contrast is improved by taking advantage of stronger sensitivity to anisotropy of transverse acoustic waves, compared with longitudinal waves. Utilization of transverse waves in the image processing reveals additional boundaries, confirmed by an electron backscattering diffraction pattern but not discerned using longitudinal waves. A buried inclined interface between differently oriented grains is identified by monitoring changes in amplitude (phase) of the portion of the signal associated with transverse (longitudinal) waves. Estimates of the inclination angle of this interface prove the sensitivity of our laser ultrasonic method to image inclined boundaries.

14.
Nano Lett ; 21(14): 6261-6267, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279964

RESUMO

High-frequency surface phonons have a myriad of applications in telecommunications and sensing, but their generation and detection have often been limited to transducers occupying micron-scale regions because of the use of two-dimensional transducer arrays. Here, by means of transient reflection spectroscopy we experimentally demonstrate optically coupled nanolocalized gigahertz surface phonon transduction based on a gold nanowire emitter arranged parallel to linear gold nanorod receiver arrays, that is, quasi-one-dimensional emitter-receivers. We investigate the response up to 10 GHz of these individual optoacoustic and acousto-optic transducers, respectively, by exploiting plasmon-polariton longitudinal resonances of the nanorods. We also demonstrate how the surface phonon detection efficiency is highly dependent on the nanorod orientation with respect to the phonon wave vector, which constrains the symmetry of the detectable modes, and on the nanorod acoustic resonance spectrum. Applications include nanosensing.


Assuntos
Nanoestruturas , Nanotubos , Ouro , Fônons , Transdutores
15.
ACS Nano ; 15(3): 4802-4810, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33593052

RESUMO

In nanoscale communications, high-frequency surface acoustic waves are becoming effective data carriers and encoders. On-chip communications require acoustic wave propagation along nanocorrugated surfaces which strongly scatter traditional Rayleigh waves. Here, we propose the delivery of information using subsurface acoustic waves with hypersound frequencies of ∼20 GHz, which is a nanoscale analogue of subsurface sound waves in the ocean. A bunch of subsurface hypersound modes are generated by pulsed optical excitation in a multilayer semiconductor structure with a metallic nanograting on top. The guided hypersound modes propagate coherently beneath the nanograting, retaining the surface imprinted information, at a distance of more than 50 µm which essentially exceeds the propagation length of Rayleigh waves. The concept is suitable for interfacing single photon emitters, such as buried quantum dots, carrying coherent spin excitations in magnonic devices and encoding the signals for optical communications at the nanoscale.

16.
Photoacoustics ; 20: 100205, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33024693

RESUMO

Time-domain Brillouin scattering is an opto-acousto-optical probe technique for the evaluation of transparent materials. Via optoacoustic conversion, ultrashort pump laser pulses launch coherent acoustic pulses in the sample. Time-delayed ultrashort probe laser pulses monitor the propagation of the coherent acoustic pulses via the photo-elastic effect, which induces light scattering. A photodetector collects both the acoustically scattered light and the probe light reflected by the sample structure for the heterodyning. The scattered probe light carries information on the acoustical, optical and acousto-optical parameters of the material for the current position of the coherent acoustic pulse. Thus, among other applications, time-domain Brillouin scattering is a technique for three-dimensional imaging. Sharp focusing of coherent acoustic pulses and probe laser pulses could increase lateral spatial resolution of imaging, but could potentially diminish the depth of imaging. However, the theoretical analysis presented in this manuscript contra-intuitively demonstrates that the depth and spectral resolution of the time-domain Brillouin scattering imaging, with collinearly propagating paraxial sound and light beams, do not depend on the focusing/diffraction of sound. The variations of the amplitude of the time-domain Brillouin scattering signal are only due to the variations of the probe light amplitude caused by light focusing/diffraction. Although the amplitude of the acoustically scattered light is proportional to the product of the local acoustical and probe light field amplitudes, the temporal dynamics of the time-domain Brillouin scattering signal amplitude is independent of the dynamics of the coherent acoustic pulse amplitude.

17.
Nat Commun ; 11(1): 4130, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807771

RESUMO

Energy harvesting is a concept which makes dissipated heat useful by transferring thermal energy to other excitations. Most of the existing principles are realized in systems which are heated continuously. We present the concept of high-frequency energy harvesting where the dissipated heat in a sample excites resonant magnons in a thin ferromagnetic metal layer. The sample is excited by femtosecond laser pulses with a repetition rate of 10 GHz, which results in temperature modulation at the same frequency with amplitude ~0.1 K. The alternating temperature excites magnons in the ferromagnetic nanolayer which are detected by measuring the net magnetization precession. When the magnon frequency is brought onto resonance with the optical excitation, a 12-fold increase of the amplitude of precession indicates efficient resonant heat transfer from the lattice to coherent magnons. The demonstrated principle may be used for energy harvesting in various nanodevices operating at GHz and sub-THz frequency ranges.

18.
Nat Commun ; 11(1): 1597, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221281

RESUMO

Characterization of microstructure, chemistry and function of energy materials remains a challenge for instrumentation science. This active area of research is making considerable strides with methodologies that employ bright X-rays, electron microscopy, and optical spectroscopy. However, further development of instruments capable of multimodal measurements, is necessary to reveal complex microstructure evolution in realistic environments. In this regard, laser-based instruments have a unique advantage as multiple methodologies are easily combined into a single instrument. A pump-probe method that uses optically generated acoustic phonons is expanding standard optical characterization by providing depth resolved information. Here we report on an extension of this method to image grain microstructure in ceria. Rich information regarding the orientation of individual crystallites is obtained by noting how the polarization of the probe beam influences the detected signal amplitude. When paired with other optical microscopies, this methodology will provide new perspectives for characterization of ceramic materials.

19.
Phys Rev E ; 99(5-1): 052209, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31212504

RESUMO

Nonlinear acoustic metamaterials offer the potential to enhance wave control opportunities beyond those already demonstrated via dispersion engineering in linear metamaterials. Managing the nonlinearities of a dynamic elastic system, however, remains a challenge, and the need now exists for new strategies to model and design these wave nonlinearities. Inspired by recent research on soft architected rotating-square structures, we propose herein a design for a nonlinear elastic metasurface with the capability to achieve nonlinear acoustic wave reflection control. The designed metasurface is composed of a single layer of rotating squares connected to thin and highly deformable ligaments placed between a rigid plate and a wall. It is shown that during the process of reflection at normal incidence, most of the incoming fundamental wave energy can be converted into the second harmonic wave. A conversion coefficient of approximately 0.8 towards the second harmonic is derived with a reflection coefficient of <0.05 at the incoming fundamental frequency. The theoretical results obtained using the harmonic balance method for a monochromatic pump source are confirmed by time-domain simulations for wave packets. The reported design of a nonlinear acoustic metasurface can be extended to a large family of architected structures, thus opening new avenues for realistic metasurface designs that provide for nonlinear or amplitude-dependent wave tailoring.

20.
Rev Sci Instrum ; 88(7): 074904, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764524

RESUMO

We present an optical technique based on ultrafast photoacoustics to determine the local temperature distribution profile in liquid samples in contact with a laser heated optical transducer. This ultrafast pump-probe experiment uses time-domain Brillouin scattering (TDBS) to locally determine the light scattering frequency shift. As the temperature influences the Brillouin scattering frequency, the TDBS signal probes the local laser-induced temperature distribution in the liquid. We demonstrate the relevance and the sensitivity of this technique for the measurement of the absolute laser-induced temperature gradient of a glass forming liquid prototype, glycerol, at different laser pump powers-i.e., different steady state background temperatures. Complementarily, our experiments illustrate how this TDBS technique can be applied to measure thermal diffusion in complex multilayer systems in contact with a surrounding liquid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA