Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36837021

RESUMO

In the present study we investigated the nanostructuring processes in locally suspended few-layer graphene (FLG) films by irradiation with high energy ions (Xe, 26-167 MeV). For such an energy range, the main channel of energy transfer to FLG is local, short-term excitation of the electronic subsystem. The irradiation doses used in this study are 1 × 1011-5 × 1012 ion/cm2. The structural transformations in the films were identified by Raman spectroscopy and transmission electron microscopy. Two types of nanostructures formed in the FLG films as a result of irradiation were revealed. At low irradiation doses the nanostructures were formed preferably at a certain distance from the ion track and had the form of 15-35 nm "bunches". We assumed that the internal mechanical stress that arises due to the excited atoms ejection from the central track part creates conditions for the nanodiamond formation near the track periphery. Depending on the energy of the irradiating ions, the local restructuring of films at the periphery of the ion tracks can lead either to the formation of nanodiamonds (ND) or to the formation of AA' (or ABC) stacking. The compressive strain value and pressure at the periphery of the ion track were estimated as ~0.15-0.22% and ~0.8-1.2 GPa, respectively. The main novel results are the first visualization of ion tracks in graphene in the form of diamond or diamond-like rings, the determination of the main condition for the diamond formation (the absence of a substrate in combination with high ion energy), and estimates of the local strain at the track periphery. Generally, we have developed a novel material and have found how to control the film properties by introducing regions similar to quantum dots with the diamond interface in FLG films.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558302

RESUMO

The use of low-temperature (LT) GaAs layers as dislocation filters in GaAs/Si heterostructures (HSs) was investigated in this study. The effects of intermediate LT-GaAs layers and of the post-growth and cyclic in situ annealing on the structural properties of GaAs/LT-GaAs/GaAs/Si(001) HSs were studied. It was found that the introduction of LT-GaAs layers, in combination with post-growth cyclic annealing, reduced the threading dislocation density down to 5 × 106 cm-2, the root-mean-square roughness of the GaAs surface down to 1.1 nm, and the concentration of non-radiative recombination centers in the near-surface GaAs/Si regions down to the homoepitaxial GaAs level. Possible reasons for the improvement in the quality of near-surface GaAs layers are discussed. On the one hand, the presence of elastic deformations in the GaAs/LT-GaAs system led to dislocation line bending. On the other hand, gallium vacancies, formed in the LT-GaAs layers, diffused into the overlying GaAs layers and led to an increase in the dislocation glide rate. It was demonstrated that the GaAs/Si HSs obtained with these techniques are suitable for growing high-quality light-emitting HSs with self-assembled quantum dots.

3.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296897

RESUMO

In this study, the appearance of magnetic moments and ferromagnetism in nanostructures of non-magnetic materials based on silicon and transition metals (such as iron) was considered experimentally and theoretically. An analysis of the related literature shows that for a monolayer iron coating on a vicinal silicon surface with (111) orientation after solid-phase annealing at 450-550 °C, self-ordered two-dimensional islands of α-FeSi2 displaying superparamagnetic properties are formed. We studied the transition to ferromagnetic properties in a system of α-FeSi2 nanorods (NRs) in the temperature range of 2-300 K with an increase in the iron coverage to 5.22 monolayers. The structure of the NRs was verified along with distortions in their lattice parameters due to heteroepitaxial growth. The formation of single-domain grains in α-FeSi2 NRs with a cross-section of 6.6 × 30 nm2 was confirmed by low-temperature and field studies and FORC (first-order magnetization reversal curves) diagrams. A mechanism for maintaining ferromagnetic properties is proposed. Ab initio calculations in freestanding α-FeSi2 nanowires revealed the formation of magnetic moments for some surface Fe atoms only at specific facets. The difference in the averaged magnetic moments between theory and experiments can confirm the presence of possible contributions from defects on the surface of the NRs and in the bulk of the α-FeSi2 NR crystal lattice. The formed α-FeSi2 NRs with ferromagnetic properties up to 300 K are crucial for spintronic device development within planar silicon technology.

4.
Phys Chem Chem Phys ; 23(36): 20434-20443, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494063

RESUMO

Memristors currently attract much attention as basic building blocks for future neuromorphic electronics. Due to their unusual electronic, optical, magnetic, electrochemical, and structural properties, transition metal oxides offer much potential in the development of memristors. Recent trends in the design and fabrication of electronic devices have led to miniaturization of their working elements, with nanometer-sized structures enjoying increasing demand. In the present study, we investigated resistive switching on individual vanadium oxide (V2O5) crystal-hydrate nanoparticles, 2 to 10 nm in size, encapsulated in fluorinated graphene (FG). Measurements using a conductive atomic force microscope (c-AFM) probe showed that the core-shell V2O5/FG nanoparticles make it possible to achieve bipolar resistive switching, reproducible during 104 switching cycles, with the ON/OFF current ratio reaching 103-105. The switching voltage of the structures depends on the thickness of the FG shells of the composite particles and equals ∼2-4 V. It is shown that the encapsulation of V2O5 particles in fluorinated graphene ensures a high stability of the resistive switching effect and, simultaneously, prevents the escape of water from the crystalline vanadium oxide hydrates. A qualitative model is proposed to describe the bipolar resistive switching effect in examined structures. Results reported in the present article will prove useful in creating bipolar nanoswitches.

5.
Nanotechnology ; 31(29): 295602, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32213679

RESUMO

A new approach to creating a new and locally nanostructured graphene-based material is reported. We studied the electric and structural properties of partially fluorinated graphene (FG) films obtained from an FG-suspension and nanostructured by high-energy Xe ions. Local shock heating in ion tracks is suggested to be the main force driving the changes. It was found that ion irradiation leads to the formation of locally thermally expanded FG and its cracking into nanoparticles with small (∼1.5-3 nm) graphene quantum dots (GQD), embedded in them. The bandgap of GQD was estimated as 1 -1.5 eV. A further developed approach was applied to correct the functional properties of printed FG-based crossbar memristors. Dielectric FG films with small quantum dots may offer prospects in graphene-based electronics due to their stability and promising properties.

6.
Nanoscale ; 12(5): 3443-3454, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31989999

RESUMO

A new approach for the formation of free-standing vertical resistive nanoswitches based on VO2 nanocrystals (NCs) with embedded conductive nanosharp Si tips is demonstrated in the present article. This approach consists in the chemical vapor deposition synthesis of VO2 NCs on the apices of sharp conductive nanotips formed on a Si substrate by the standard methods of planar silicon technology. The amplification of the electric field and current density at the tip apex inside a high-quality VO2 NC leads to a record-breaking reduction of switching voltage (by a factor of 20-70) in comparison with conventional geometry devices with planar contacts. Our pulse measurements showed that the extremely low energy equal to 4.2 fJ was consumed for the switching in such NCs, and the total number of switching cycles in one NC without degradation exceeded 1011. The proposed approach can be extended to the formation of large arrays of such nanoswitches. We showed that periodic arrays of individual VO2 NCs were selectively synthesized on sharp Si tips. The nanosizes of the switches, ultra-low power consumption for switching and the possibility of forming dense arrays of such objects make the fabricated nanoswitches promising devices for future neuromorphic systems.

7.
J Mater Sci Mater Med ; 30(6): 69, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31165268

RESUMO

Biocompatible PtxIr(1-x) layers combining high mechanical strength of the iridium component and outstanding corrosion resistance of the platinum component providing reversible charge transfer reactions in the living tissue are one of the important materials required for implantable medical electrodes. The modern trend to complicate the shape and reduce the electrode dimensions includes the challenge to develop precise methods to obtain such bimetallic coatings with enhanced surface area and advanced electrochemical characteristics. Herein, PtxIr(1-x) coatings were firstly obtained on cathode and anode pole tips of endocardial electrodes for pacemakers using chemical vapor deposition technique. To deposit PtxIr(1-x) coatings with a wide range of metal ratios (x = 0.5-0.9) the combination of acetylacetonate-based volatile precursors with compatible thermal characteristics was used for the first time. The expected metal ratio in the coatings was regulated by a partial pressure of the precursor vapors in the reaction zone and was in the good agreement with its real value measured by various methods, including energy-dispersive and wavelength dispersive spectroscopy, X-ray photoelectron spectroscopy. According to the X-ray powder diffraction analysis, PtxIr(1-x) coatings consisted of fcc-PtxIr(1-x) solid solution phases. The microscopy data confirmed the formation of PtxIr1-x coatings with the enhanced surface areas. The effect of electrochemical activation on the surface composition and morphology of the samples was studied. The electrochemical characteristics of samples were estimated from cyclic voltammetry and electrochemical impedance spectroscopy data. The charge storage capacity (CSC) values of activated samples were in the range of 19-108 mCcm-2 (phosphate buffer saline solution, 100 mV/s).


Assuntos
Materiais Revestidos Biocompatíveis/química , Técnicas Eletroquímicas , Eletrodos , Irídio/química , Platina/química , Tecnologia Biomédica , Corrosão , Espectroscopia Dielétrica , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Titânio/química , Difração de Raios X
8.
Sci Rep ; 8(1): 4082, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511317

RESUMO

Three decades after the prediction of charge-vortex duality in the critical vicinity of the two-dimensional superconductor-insulator transition (SIT), one of the fundamental implications of this duality-the charge Berezinskii-Kosterlitz-Thouless (BKT) transition that should occur on the insulating side of the SIT-has remained unobserved. The dual picture of the process points to the existence of a superinsulating state endowed with zero conductance at finite temperature. Here, we report the observation of the charge BKT transition on the insulating side of the SIT in 10 nm thick NbTiN films, identified by the BKT critical behavior of the temperature and magnetic field dependent resistance, and map out the magnetic-field dependence of the critical temperature of the charge BKT transition. Finally, we ascertain the effects of the finite electrostatic screening length and its divergence at the magnetic field-tuned approach to the superconductor-insulator transition.

9.
Parasit Vectors ; 8: 459, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26382743

RESUMO

BACKGROUND: Hemozoin is the pigment produced by some blood-feeding parasites. It demonstrates high diagnostic and therapeutic potential. In this work the formation of co-called hemozoin "knobs" - the bile duct ectasia filled up by hemozoin pigment - in Opisthorhis felineus infected hamster liver has been observed. METHODS: The O. felineus infected liver was examined by histological analysis and magnetic resonance imaging (MRI). The pigment hemozoin was identified by Fourier transform infrared spectroscopy and high resolution electrospray ionization mass spectrometry analysis. Hemozoin crystals were characterised by high resolution transmission electron microscopy. RESULTS: Hemozoin crystals produced by O. felineus have average length 403 nm and the length-to-width ratio equals 2.0. The regurgitation of hemozoin from parasitic fluke during infection leads to formation of bile duct ectasia. The active release of hemozoin from O. felineus during in vitro incubation has also been evidenced. It has been shown that the hemozoin knobs can be detected by magnetic resonance imaging. CONCLUSIONS: In the paper for the first time the characterisation of hemozoin pigment extracted from liver fluke O. felineus has been conducted. The role of hemozoin in the modification of immune response by opisthorchiasis is assumed.


Assuntos
Hemeproteínas/análise , Opistorquíase/patologia , Opisthorchis/química , Opisthorchis/crescimento & desenvolvimento , Animais , Cricetinae , Histocitoquímica , Fígado/patologia , Imageamento por Ressonância Magnética , Microscopia Eletrônica de Transmissão , Opistorquíase/parasitologia , Pigmentos Biológicos/análise , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Beilstein J Nanotechnol ; 6: 1192-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26171295

RESUMO

A novel approach for the in situ synthesis of zerovalent aryl-coated iron nanoparticles (NPs) based on diazonium salt chemistry is proposed. Surface-modified zerovalent iron NPs (ZVI NPs) were prepared by simple chemical reduction of iron(III) chloride aqueous solution followed by in situ modification using water soluble arenediazonium tosylate. The resulting NPs, with average iron core diameter of 21 nm, were coated with a 10 nm thick organic layer to provide long-term protection in air for the highly reactive zerovalent iron core up to 180 °C. The surface-modified iron NPs possess a high grafting density of the aryl group on the NPs surface of 1.23 mmol/g. FTIR spectroscopy, XRD, HRTEM, TGA/DTA, and elemental analysis were performed in order to characterize the resulting material.

11.
Microsc Microanal ; 19 Suppl 5: 38-42, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23920171

RESUMO

We report the direct visualization of point defect clustering in {113} planes of silicon crystal using a transmission electron microscope, which was supported by structural modeling and high-resolution electron microscope image simulations. In the initial stage an accumulation of nonbonded interstitial-vacancy (I-V) pairs stacked at a distance of 7.68 Å along neighboring atomic chains located on the {113} plane takes place. Further broadening of the {113} defect across its plane is due to the formation of planar fourfold coordinated defects (FFCDs) perpendicular to chains accumulating I-V pairs. Closely packed FFCDs create a sequence of eightfold rings in the {113} plane, providing sites for additional interstitials. As a result, the perfect interstitial chains are built on the {113} plane to create an equilibrium structure. Self-ordering of point defects driven by their nonisotropic strain fields is assumed to be the main force for point defect clustering in the {113} plane under the existence of an energy barrier for their recombination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA