Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Hemasphere ; 8(2): e45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435427

RESUMO

Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we identify HIFhigh and HIFlow specific AML subgroups (inv(16)/t(8;21) and MLLr, respectively) and provide a comprehensive single-cell expression atlas of 119,000 AML cells and AML-LSCs in paired diagnostic-relapse samples from these molecular subgroups. The HIF/hypoxia pathway signature is attenuated in AML-LSCs compared with more differentiated AML cells but is more expressed than in healthy hematopoietic cells. Importantly, chemical inhibition of HIF cooperates with standard-of-care chemotherapy to impair AML growth and to substantially eliminate AML-LSCs in vitro and in vivo. These findings support the HIF pathway in the stem cell-driven drug resistance of AML and unravel avenues for combinatorial targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.

3.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36162920

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cells have emerged as a breakthrough treatment for relapse/refractory hematological tumors, showing impressive complete remission rates. However, around 50% of the patients relapse before 1-year post-treatment. T-cell 'fitness' is critical to prolong CAR-T persistence and activity. Allogeneic T cells from healthy donors are less dysfunctional or exhausted than autologous patient-derived T cells; in this context, Delta One T cells (DOTs), a recently described cellular product based on MHC/HLA-independent Vδ1+γδ T cells, represent a promising allogeneic platform. METHODS: Here we generated and preclinically validated, for the first time, 4-1BB-based CAR-DOTs directed against the interleukin-3α chain receptor (CD123), a target antigen widely expressed on acute myeloid leukemia (AML) blasts. RESULTS: CD123CAR-DOTs showed vigorous, superior to control DOTs, cytotoxicity against AML cell lines and primary samples both in vitro and in vivo, even on tumor rechallenge. CONCLUSIONS: Our results provide the proof-of-concept for a DOT-based next-generation allogeneic CAR-T therapy for AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Interleucinas , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Recidiva
4.
Cancer Immunol Res ; 10(4): 498-511, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362043

RESUMO

Chimeric antigen receptor (CAR)-modified T cells have revolutionized the treatment of CD19-positive hematologic malignancies. Although anti-CD19 CAR-engineered autologous T cells can induce remission in patients with B-cell acute lymphoblastic leukemia, a large subset relapse, most of them with CD19-positive disease. Therefore, new therapeutic strategies are clearly needed. Here, we report a comprehensive study comparing engineered T cells either expressing a second-generation anti-CD19 CAR (CAR-T19) or secreting a CD19/CD3-targeting bispecific T-cell engager antibody (STAb-T19). We found that STAb-T19 cells are more effective than CAR-T19 cells at inducing cytotoxicity, avoiding leukemia escape in vitro, and preventing relapse in vivo. We observed that leukemia escape in vitro is associated with rapid and drastic CAR-induced internalization of CD19 that is coupled with lysosome-mediated degradation, leading to the emergence of transiently CD19-negative leukemic cells that evade the immune response of engineered CAR-T19 cells. In contrast, engineered STAb-T19 cells induce the formation of canonical immunologic synapses and prevent the CD19 downmodulation observed in anti-CD19 CAR-mediated interactions. Although both strategies show similar efficacy in short-term mouse models, there is a significant difference in a long-term patient-derived xenograft mouse model, where STAb-T19 cells efficiently eradicated leukemia cells, but leukemia relapsed after CAR-T19 therapy. Our findings suggest that the absence of CD19 downmodulation in the STAb-T19 strategy, coupled with the continued antibody secretion, allows an efficient recruitment of the endogenous T-cell pool, resulting in fast and effective elimination of cancer cells that may prevent CD19-positive relapses frequently associated with CAR-T19 therapies.


Assuntos
Leucemia , Linfócitos T , Animais , Antígenos CD19 , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Recidiva
5.
Blood ; 140(1): 38-44, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35421218

RESUMO

CD19-directed immunotherapies have revolutionized the treatment of advanced B-cell acute lymphoblastic leukemia (B-ALL). Despite initial impressive rates of complete remission (CR) many patients ultimately relapse. Patients with B-ALL successfully treated with CD19-directed T cells eventually relapse, which, coupled with the early onset of CD22 expression during B-cell development, suggests that preexisting CD34+CD22+CD19- (pre)-leukemic cells represent an "early progenitor origin-related" mechanism underlying phenotypic escape to CD19-directed immunotherapies. We demonstrate that CD22 expression precedes CD19 expression during B-cell development. CD34+CD19-CD22+ cells are found in diagnostic and relapsed bone marrow samples of ∼70% of patients with B-ALL, and their frequency increases twofold in patients with B-ALL in CR after CD19 CAR T-cell therapy. The median of CD34+CD19-CD22+ cells before treatment was threefold higher in patients in whom B-ALL relapsed after CD19-directed immunotherapy (median follow-up, 24 months). Fluorescence in situ hybridization analysis in flow-sorted cell populations and xenograft modeling revealed that CD34+CD19-CD22+ cells harbor the genetic abnormalities present at diagnosis and initiate leukemogenesis in vivo. Our data suggest that preleukemic CD34+CD19-CD22+ progenitors underlie phenotypic escape after CD19-directed immunotherapies and reinforce ongoing clinical studies aimed at CD19/CD22 dual targeting as a strategy for reducing CD19- relapses. The implementation of CD34/CD19/CD22 immunophenotyping in clinical laboratories for initial diagnosis and subsequent monitoring of patients with B-ALL during CD19-targeted therapy is encouraged.


Assuntos
Antígenos CD19 , Linfoma de Burkitt , Antígenos CD34 , Linfócitos B , Humanos , Imunofenotipagem , Hibridização in Situ Fluorescente , Recidiva , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
6.
Cancers (Basel) ; 14(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35326743

RESUMO

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Patients with AML harboring a constitutively active internal tandem duplication mutation (ITDMUT) in the FMS-like kinase tyrosine kinase (FLT3) receptor generally have a poor prognosis. Several tyrosine kinase/FLT3 inhibitors have been developed and tested clinically, but very few (midostaurin and gilteritinib) have thus far been FDA/EMA-approved for patients with newly diagnosed or relapse/refractory FLT3-ITDMUT AML. Disappointingly, clinical responses are commonly partial or not durable, highlighting the need for new molecules targeting FLT3-ITDMUT AML. Here, we tested EC-70124, a hybrid indolocarbazole analog from the same chemical space as midostaurin with a potent and selective inhibitory effect on FLT3. In vitro, EC-70124 exerted a robust and specific antileukemia activity against FLT3-ITDMUT AML primary cells and cell lines with respect to cytotoxicity, CFU capacity, apoptosis and cell cycle while sparing healthy hematopoietic (stem/progenitor) cells. We also analyzed its efficacy in vivo as monotherapy using two different xenograft models: an aggressive and systemic model based on MOLM-13 cells and a patient-derived xenograft model. Orally disposable EC-70124 exerted a potent inhibitory effect on the growth of FLT3-ITDMUT AML cells, delaying disease progression and debulking the leukemia. Collectively, our findings show that EC-70124 is a promising and safe agent for the treatment of AML with FLT3-ITDMUT.

8.
Mol Ther ; 30(2): 550-563, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478871

RESUMO

CD19-directed chimeric antigen receptor (CAR) T cells have yielded impressive response rates in refractory/relapse B cell acute lymphoblastic leukemia (B-ALL); however, most patients ultimately relapse due to poor CAR T cell persistence or resistance of either CD19+ or CD19- B-ALL clones. CD22 is a pan-B marker whose expression is maintained in both CD19+ and CD19- relapses. CD22-CAR T cells have been clinically used in B-ALL patients, although relapse also occurs. T cells engineered with a tandem CAR (Tan-CAR) containing in a single construct both CD19 and CD22 scFvs may be advantageous in achieving higher remission rates and/or preventing antigen loss. We have generated and functionally validated using cutting-edge assays a 4-1BB-based CD22/CD19 Tan-CAR using in-house-developed novel CD19 and CD22 scFvs. Tan-CAR-expressing T cells showed similar in vitro expansion to CD19-CAR T cells with no increase in tonic signaling. CRISPR-Cas9-edited B-ALL cells confirmed the bispecificity of the Tan-CAR. Tan-CAR was as efficient as CD19-CAR in vitro and in vivo using B-ALL cell lines, patient samples, and patient-derived xenografts (PDXs). Strikingly, the robust antileukemic activity of the Tan-CAR was slightly more effective in controlling the disease in long-term follow-up PDX models. This Tan-CAR construct warrants a clinical appraisal to test whether simultaneous targeting of CD19 and CD22 enhances leukemia eradication and reduces/delays relapse rates and antigen loss.


Assuntos
Receptores de Antígenos Quiméricos , Antígenos CD19 , Linfócitos B , Humanos , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Linfócitos T
9.
Blood Adv ; 5(23): 4842-4854, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34470043

RESUMO

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Disease heterogeneity is well documented, and patient stratification determines treatment decisions. Patient-derived xenografts (PDXs) from risk-stratified AML are crucial for studying AML biology and testing novel therapeutics. Despite recent advances in PDX modeling of AML, reproducible engraftment of human AML is primarily limited to high-risk (HR) cases, with inconsistent or very protracted engraftment observed for favorable-risk (FR) and intermediate-risk (IR) patients. We used NSGS mice to characterize the engraftment robustness/kinetics of 28 AML patient samples grouped according to molecular/cytogenetic classification and assessed whether the orthotopic coadministration of patient-matched bone marrow mesenchymal stromal cells (BM MSCs) improves AML engraftment. PDX event-free survival correlated well with the predictable prognosis of risk-stratified AML patients. The majority (85-94%) of the mice were engrafted in bone marrow (BM) independently of the risk group, although HR AML patients showed engraftment levels that were significantly superior to those of FR or IR AML patients. Importantly, the engraftment levels observed in NSGS mice by week 6 remained stable over time. Serial transplantation and long-term culture-initiating cell (LTC-IC) assays revealed long-term engraftment limited to HR AML patients, fitter leukemia-initiating cells (LICs) in HR AML samples, and the presence of AML LICs in the CD34- leukemic fraction, regardless of the risk group. Finally, orthotopic coadministration of patient-matched BM MSCs and AML cells was dispensable for BM engraftment levels but favored peripheralization of engrafted AML cells. This comprehensive characterization of human AML engraftment in NSGS mice offers a valuable platform for in vivo testing of targeted therapies in risk-stratified AML patient samples.


Assuntos
Leucemia Mieloide Aguda , Animais , Antígenos CD34 , Medula Óssea , Humanos , Leucemia Mieloide Aguda/terapia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
10.
Front Cell Dev Biol ; 9: 636704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095110

RESUMO

The generation of transplantable hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) remains challenging. Current differentiation protocols from hPSCs generate mostly hematopoietic progenitors of the primitive HSC-independent program, and it remains unclear what is the best combination of cytokines and hematopoietic growth factors (HGFs) for obtaining functional hematopoietic cells in vitro. Here, we have used the AND1 and H9 hESC lines and the H9:dual-reporter RUNX1C-GFP-SOX17-Cherry to compare the hematopoietic differentiation in vitro based on the treatment of embryoid bodies (EBs) with the ventral mesoderm inducer BMP4 plus HGFs in the absence (protocol 1) or presence (protocol 2) of stage-specific activation of Wnt/ß-catenin and inhibition of Activin/Nodal. Despite a slight trend in favor of protocol 1, no statistically significant differences were observed between protocols at any time point analyzed throughout EB development regarding the frequency of hemogenic endothelial (HE) precursors; CD43+ CD45-, CD45+, and CD45 + CD34 + hematopoietic derivatives; or the output of clonogenic progenitors. Similarly, the kinetics of emergence throughout EB development of both SOX17 + HE and RUNX1C + definitive hematopoiesis was very similar for both protocols. The expression of the early master mesendodermal transcription factors Brachyury, MIXL1, and KDR revealed similar gene expression kinetics prior to the emergence of RUNX1C + definitive hematopoiesis for both protocols. Collectively, the simpler protocol 1 is, at least, as efficient as protocol 2, suggesting that supplementation with additional morphogens/HGFs and modulation of Activin/Nodal and Wnt/ß-catenin pathways seem dispensable for in vitro hematopoietic differentiation of hPSCs.

11.
J Clin Invest ; 131(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983906

RESUMO

B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL-specific gene expression-correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient-derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.


Assuntos
Rearranjo Gênico do Linfócito B , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Epigenoma , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Humanos , Lactente , Camundongos , Camundongos Endogâmicos NOD , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Clin Transl Med ; 11(2): e280, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33634970

RESUMO

CD19-directed chimeric antigen receptors (CAR) T cells induce impressive rates of complete response in advanced B-cell malignancies, specially in B-cell acute lymphoblastic leukemia (B-ALL). However, CAR T-cell-treated patients eventually progress due to poor CAR T-cell persistence and/or disease relapse. The bone marrow (BM) is the primary location for acute leukemia. The rapid/efficient colonization of the BM by systemically infused CD19-CAR T cells might enhance CAR T-cell activity and persistence, thus, offering clinical benefits. Circulating cells traffic to BM upon binding of tetrasaccharide sialyl-Lewis X (sLeX)-decorated E-selectin ligands (sialofucosylated) to the E-selectin receptor expressed in the vascular endothelium. sLeX-installation in E-selectin ligands is achieved through an ex vivo fucosylation reaction. Here, we sought to characterize the basal and cell-autonomous display of sLeX in CAR T-cells activated using different cytokines, and to assess whether exofucosylation of E-selectin ligands improves CD19-CAR T-cell activity and BM homing. We report that cell-autonomous sialofucosylation (sLeX display) steadily increases in culture- and in vivo-expanded CAR T cells, and that, the cytokines used during T-cell activation influence both the degree of such endogenous sialofucosylation and the CD19-CAR T-cell efficacy and persistence in vivo. However, glycoengineered enforced sialofucosylation of E-selectin ligands was dispensable for CD19-CAR T-cell activity and BM homing in multiple xenograft models regardless the cytokines employed for T-cell expansion, thus, representing a dispensable strategy for CD19-CAR T-cell therapy.


Assuntos
Antígenos CD19/imunologia , Medula Óssea/imunologia , Selectina E/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Antígeno Sialil Lewis X/imunologia , Animais , Endotélio Vascular/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos NOD , Modelos Animais
13.
J Immunother Cancer ; 8(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788237

RESUMO

BACKGROUND: There are few therapeutic options available for patients with B-cell acute lymphoblastic leukemia (B-ALL) relapsing as CD19- either after chemotherapy or CD19-targeted immunotherapies. CD22-chimeric antigen receptor (CAR) T cells represent an attractive addition to CD19-CAR T cell therapy because they will target both CD22+CD19- B-ALL relapses and CD19- preleukemic cells. However, the immune escape mechanisms from CD22-CAR T cells, and the potential contribution of the epitope binding of the anti-CD22 single-chain variable fragment (scFv) remain understudied. METHODS: Here, we have developed and comprehensively characterized a novel CD22-CAR (clone hCD22.7) targeting a membrane-distal CD22 epitope and tested its cytotoxic effects against B-ALL cells both in in vitro and in vivo assays. RESULTS: Conformational epitope mapping, cross-blocking, and molecular docking assays revealed that the hCD22.7 scFv is a high-affinity binding antibody which specifically binds to the ESTKDGKVP sequence, located in the Ig-like V-type domain, the most distal domain of CD22. We observed efficient killing of B-ALL cells in vitro, although the kinetics were dependent on the level of CD22 expression. Importantly, we show an efficient in vivo control of patients with B-ALL derived xenografts with diverse aggressiveness, coupled to long-term hCD22.7-CAR T cell persistence. Remaining leukemic cells at sacrifice maintained full expression of CD22, ruling out CAR pressure-mediated antigen loss. Finally, the immunogenicity capacity of this hCD22.7-scFv was very similar to that of other CD22 scFv previously used in adoptive T cell therapy. CONCLUSIONS: We report a novel, high-affinity hCD22.7 scFv which targets a membrane-distal epitope of CD22. 4-1BB-based hCD22.7-CAR T cells efficiently eliminate clinically relevant B- CD22high and CD22low ALL primary samples in vitro and in vivo. Our study supports the clinical translation of this hCD22.7-CAR as either single or tandem CD22-CD19-CAR for both naive and anti-CD19-resistant patients with B-ALL.


Assuntos
Epitopos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Antígenos Quiméricos/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Animais , Humanos , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
14.
J Immunother Cancer ; 8(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32527933

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a hematopoietic malignancy which is biologically, phenotypically and genetically very heterogeneous. Outcome of patients with AML remains dismal, highlighting the need for improved, less toxic therapies. Chimeric antigen receptor T-cell (CART) immunotherapies for patients with refractory or relapse (R/R) AML are challenging because of the absence of a universal pan-AML target antigen and the shared expression of target antigens with normal hematopoietic stem/progenitor cells (HSPCs), which may lead to life-threating on-target/off-tumor cytotoxicity. CD33-redirected and CD123-redirected CARTs for AML are in advanced preclinical and clinical development, and they exhibit robust antileukemic activity. However, preclinical and clinical controversy exists on whether such CARTs are myeloablative. METHODS: We set out to comparatively characterize in vitro and in vivo the efficacy and safety of 41BB-based and CD28-based CARCD123. We analyzed 97 diagnostic and relapse AML primary samples to investigate whether CD123 is a suitable immunotherapeutic target, and we used several xenograft models and in vitro assays to assess the myeloablative potential of our second-generation CD123 CARTs. RESULTS: Here, we show that CD123 represents a bona fide target for AML and show that both 41BB-based and CD28-based CD123 CARTs are very efficient in eliminating both AML cell lines and primary cells in vitro and in vivo. However, both 41BB-based and CD28-based CD123 CARTs ablate normal human hematopoiesis and prevent the establishment of de novo hematopoietic reconstitution by targeting both immature and myeloid HSPCs. CONCLUSIONS: This study calls for caution when clinically implementing CD123 CARTs, encouraging its preferential use as a bridge to allo-HSCT in patients with R/R AML.


Assuntos
Antígenos CD28/metabolismo , Engenharia Celular/métodos , Hematopoese/genética , Imunoterapia Adotiva/métodos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Linfócitos/metabolismo , Linfócitos T/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos
15.
Blood ; 136(3): 313-327, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32321174

RESUMO

B-cell acute lymphoblastic leukemia (ALL; B-ALL) is the most common pediatric cancer, and high hyperdiploidy (HyperD) identifies the most common subtype of pediatric B-ALL. Despite HyperD being an initiating oncogenic event affiliated with childhood B-ALL, the mitotic and chromosomal defects associated with HyperD B-ALL (HyperD-ALL) remain poorly characterized. Here, we have used 54 primary pediatric B-ALL samples to characterize the cellular-molecular mechanisms underlying the mitotic/chromosome defects predicated to be early pathogenic contributors in HyperD-ALL. We report that HyperD-ALL blasts are low proliferative and show a delay in early mitosis at prometaphase, associated with chromosome-alignment defects at the metaphase plate leading to robust chromosome-segregation defects and nonmodal karyotypes. Mechanistically, biochemical, functional, and mass-spectrometry assays revealed that condensin complex is impaired in HyperD-ALL cells, leading to chromosome hypocondensation, loss of centromere stiffness, and mislocalization of the chromosome passenger complex proteins Aurora B kinase (AURKB) and Survivin in early mitosis. HyperD-ALL cells show chromatid cohesion defects and an impaired spindle assembly checkpoint (SAC), thus undergoing mitotic slippage due to defective AURKB and impaired SAC activity, downstream of condensin complex defects. Chromosome structure/condensation defects and hyperdiploidy were reproduced in healthy CD34+ stem/progenitor cells upon inhibition of AURKB and/or SAC. Collectively, hyperdiploid B-ALL is associated with a defective condensin complex, AURKB, and SAC.


Assuntos
Adenosina Trifosfatases , Aurora Quinase B , Aberrações Cromossômicas , Cromossomos Humanos , Proteínas de Ligação a DNA , Metáfase/genética , Complexos Multiproteicos , Proteínas de Neoplasias , Ploidias , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética
16.
Mol Ther Nucleic Acids ; 20: 196-204, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171171

RESUMO

Human pluripotent stem cells (hPSCs) and mesenchymal stromal/stem cells (hMSCs) are clinically relevant sources for cellular therapies and for modeling human development and disease. Many stem cell-based applications rely on the ability to activate several endogenous genes simultaneously to modify cell fate. However, genetic intervention of these cells remains challenging. Several catalytically dead Cas9 (dCas9) proteins fused to distinct activation domains can modulate gene expression when directed to their regulatory regions by a specific single-guide RNA (sgRNA). In this study, we have compared the ability of the first-generation dCas9-VP64 activator and the second-generation systems, dCas9-SAM and dCas9-SunTag, to induce gene expression in hPSCs and hMSCs. Several stem cell lines were tested for single and multiplexed gene activation. When the activation of several genes was compared, all three systems induced specific and potent gene expression in both single and multiplexed settings, but the dCas9-SAM and dCas9-SunTag systems resulted in the highest and most consistent level of gene expression. Simultaneous targeting of the same gene with multiple sgRNAs did not result in additive levels of gene expression in hPSCs nor hMSCs. We demonstrate the robustness and specificity of second-generation dCas9 activators as tools to simultaneously activate several endogenous genes in clinically relevant human stem cells.

17.
Blood ; 133(21): 2291-2304, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30796021

RESUMO

Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient-derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


Assuntos
Antígenos CD1/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos/imunologia , Animais , Humanos , Células Jurkat , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Haematologica ; 104(6): 1189-1201, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30679325

RESUMO

The t(4;11)(q21;q23) translocation is associated with high-risk infant pro-B-cell acute lymphoblastic leukemia and arises prenatally during embryonic/fetal hematopoiesis. The developmental/pathogenic contribution of the t(4;11)-resulting MLL-AF4 (MA4) and AF4-MLL (A4M) fusions remains unclear; MA4 is always expressed in patients with t(4;11)+ B-cell acute lymphoblastic leukemia, but the reciprocal fusion A4M is expressed in only half of the patients. Because prenatal leukemogenesis manifests as impaired early hematopoietic differentiation, we took advantage of well-established human embryonic stem cell-based hematopoietic differentiation models to study whether the A4M fusion cooperates with MA4 during early human hematopoietic development. Co-expression of A4M and MA4 strongly promoted the emergence of hemato-endothelial precursors, both endothelial- and hemogenic-primed. Double fusion-expressing hemato-endothelial precursors specified into significantly higher numbers of both hematopoietic and endothelial-committed cells, irrespective of the differentiation protocol used and without hijacking survival/proliferation. Functional analysis of differentially expressed genes and differentially enriched H3K79me3 genomic regions by RNA-sequencing and H3K79me3 chromatin immunoprecipitation-sequencing, respectively, confirmed a hematopoietic/endothelial cell differentiation signature in double fusion-expressing hemato-endothelial precursors. Importantly, chromatin immunoprecipitation-sequencing analysis revealed a significant enrichment of H3K79 methylated regions specifically associated with HOX-A cluster genes in double fusion-expressing differentiating hematopoietic cells. Overall, these results establish a functional and molecular cooperation between MA4 and A4M fusions during human hematopoietic development.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hematopoese/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Animais , Apoptose/genética , Ciclo Celular/genética , Técnicas de Cocultura , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Metilação , Camundongos , Camundongos Knockout
20.
Leukemia ; 33(7): 1557-1569, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30635633

RESUMO

B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer, with cure rates of ∼80%. MLL-rearranged (MLLr) B-ALL (MLLr-B-ALL) has, however, an unfavorable prognosis with common therapy refractoriness and early relapse, and therefore new therapeutic targets are needed for relapsed/refractory MLLr-B-ALL. MLLr leukemias are characterized by the specific expression of chondroitin sulfate proteoglycan-4, also known as neuron-glial antigen-2 (NG2). NG2 was recently shown involved in leukemia invasiveness and central nervous system infiltration in MLLr-B-ALL, and correlated with lower event-free survival (EFS). We here hypothesized that blocking NG2 may synergize with established induction therapy for B-ALL based on vincristine, glucocorticoids, and L-asparaginase (VxL). Using robust patient-derived xenograft (PDX) models, we found that NG2 is crucial for MLLr-B-ALL engraftment upon intravenous (i.v.) transplantation. In vivo blockade of NG2 using either chondroitinase-ABC or an anti-NG2-specific monoclonal antibody (MoAb) resulted in a significant mobilization of MLLr-B-ALL blasts from bone marrow (BM) to peripheral blood (PB) as demonstrated by cytometric and 3D confocal imaging analysis. When combined with either NG2 antagonist, VxL treatment achieved higher rates of complete remission, and consequently higher EFS and delayed time to relapse. Mechanistically, anti-NG2 MoAb induces neither antibody-dependent cell-mediated not complement-dependent cytotoxicity. NG2 blockade rather overrides BM stroma-mediated chemoprotection through PB mobilization of MLLr-B-ALL blasts, thus becoming more accessible to chemotherapy. We provide a proof of concept for NG2 as a therapeutic target for MLLr-B-ALL.


Assuntos
Antígenos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos B/patologia , Resistencia a Medicamentos Antineoplásicos , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/prevenção & controle , Proteoglicanas/metabolismo , Animais , Antígenos/genética , Asparaginase/administração & dosagem , Dexametasona/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteoglicanas/genética , Indução de Remissão , Taxa de Sobrevida , Vincristina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA