Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Med (Praha) ; 69(6): 207-216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39021880

RESUMO

We examined the antibacterial efficacy of streptomycin, hibiscus acid, and their combination against multidrug-resistant Shiga-toxin-producing Escherichia coli (STEC) and Salmonella Typhimurium in mice. We determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for streptomycin, hibiscus acid, and their combination against STEC and Salmonella. Fifteen sets of six mice in each set were utilised: six groups were orally exposed to 4 log10 colony forming units (CFUs) of S. Typhimurium and another six to STEC, and three acted as the controls. Six hours post-inoculation, specific groups of mice received either oral solutions containing hibiscus acid at 5 and 7 mg/ml; streptomycin at 50 and 450 µg/ml; hibiscus acid/streptomycin (5 mg/ml hibiscus acid and 50 µg/ml streptomycin); or isotonic saline. The study determined the MIC and MBC of 7 mg/ml of hibiscus acid; 300 and 450 µg/ml of streptomycin; and two concentrations of hibiscus/streptomycin (3 mg/ml / 20 µg/ml and 5 mg/ml / 50 µg/ml). Interestingly, the mice that were infected and subsequently treated with hibiscus acid at 7 mg/ml alone or in conjunction with streptomycin did not have either STEC or Salmonella in their faecal samples, and none of the mice died. In contrast, the untreated mice and those exclusively treated with streptomycin had the pathogens present in their stool, leading to the mortality of all the subjects.

2.
Food Chem ; 458: 140196, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943953

RESUMO

The research aimed to assess the effects of incorporating germinated Lupinus angustifolius flour into corn extrudates for different periods (3, 5, and 7 days), focusing on starch digestibility, morphological structure, thermal, and pasting properties. Extrudate with germinated lupinus flour for 7 days (EG7) significantly increased the content of slowly digestible starch up to 10.56% (p < 0.05). Crystallinity increased up to 20% in extrudates with germinated flour compared to extrudates with ungerminated flour (EUG), observing changes at the molecular level by FTIR that impact the thermal and pasting properties. X-ray diffraction revealed angles of 2θ = 11.31, 16.60, 19.91, and 33.04 as a result of the germination and extrusion processes. Microstructural analysis indicated starch-protein interactions influencing changes in calorimetry, viscosity, X-ray diffraction, and digestibility. PCA allowed establishing that the addition of germinated flours significantly affected the properties and microstructural characteristics of extruded products, potentially affecting digestibility and nutritional quality.


Assuntos
Digestão , Germinação , Lupinus , Amido , Difração de Raios X , Zea mays , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Lupinus/química , Lupinus/metabolismo , Lupinus/crescimento & desenvolvimento , Amido/química , Amido/metabolismo , Farinha/análise , Viscosidade , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Manipulação de Alimentos
3.
Chem Biodivers ; 20(10): e202300617, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37547995

RESUMO

Sprouts are a source of secondary metabolites as phenolic compounds. Germination and the use of solvents can affect their content. The aim of this work was to identify the total content of phenols and flavonoids in ungerminated and germinated (3, 5, and 7 days) Esmeralda and Perla barley. Different solvents (water, 50 % acetone, 80 % methanol, 80 % ethanol) were used to recover total phenols and flavonoids. The 7-day germination proved to be ideal for total phenol and flavonoid obtention from Esmeralda barley and the highest total phenol and flavonoid content in Perla variety was observed at 5 and 7 days of germination, respectively. Methanol and ethanol (80 %) yielded the highest extraction percentage of total phenols; 50 % acetone recovered the highest flavonoid concentrations in Esmeralda barley and 80 % methanol in Perla barley. The highest total phenol concentration was obtained from Perla samples at 13.60 mg GAE/g, and the highest total flavonoids were observed in Esmeralda barley at 1.73 mg QE/g. A high correlation was found between the concentration of phenols (0.995) and total flavonoids (0.780) with the radicle size in the Esmeralda samples.

4.
Acta Sci Pol Technol Aliment ; 21(1): 91-99, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174691

RESUMO

BACKGROUND: Microwave heating may affect some non-starch polysaccharides of cereal kernels. This microwave effect can be positive for functional properties and the final product. Therefore, the purpose of this work was to explore the effects of microwave heating on mechanical properties, malt extract yield, wort viscosity, β-glucan of wort, and soluble, insoluble, and total dietary fiber in malting and feed barley. METHODS: The barley kernels were microwave heated for 4 and 8 s and compared with a control (0 s) with no microwave irradiation treatment. The mechanical properties were measured by compressive loadings; an Environmental Scanning Electron Microscopy was used for kernel layers. β-glucan content in the barley kernel and wort was measured with a Mixed Linkage beta-glucan (K-BGLU Megazyme International; Wicklow, Ireland). Insoluble, soluble, and total dietary fiber was determined using 32-07 of AACC method. RESULTS: The thickness of barley kernel bran layers was related to the mechanical properties. The modulus of elasticity decreased after 4 s of heating but increased after 8 s. Irradiation affected non-starch polysaccharides, such as β-glucan and fiber. β-glucan decreased after 4 s as did wort viscosity. The insoluble and total dietary fiber followed the same trend as β-glucan, but the soluble fiber content increased with prolonged microwave heating. CONCLUSIONS: A few seconds of microwave heating is enough to increase barley’s value in the brewing industry and improve health benefits due to minor changes in the biochemical grain components.


Assuntos
Hordeum , beta-Glucanas , Fibras na Dieta , Calefação , Hordeum/química , Micro-Ondas , beta-Glucanas/química
6.
Foods ; 11(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37430980

RESUMO

Cereals have phytochemical compounds that can diminish the incidence of chronic diseases such as hypertension. The angiotensin-converting enzyme 2 (ACE2) participates in the modulation of blood pressure and is the principal receptor of the virus SARS-CoV-2. The inhibitors of the angiotensin-converting enzyme (ACE) and the block receptors of angiotensin II regulate the expression of ACE2; thus, they could be useful in the treatment of patients infected with SARS-CoV-2. The inferior peptides from 1 to 3 kDa and the hydrophobic amino acids are the best candidates to inhibit ACE, and these compounds are present in rice, corn, wheat, oats, sorghum, and barley. In addition, the vitamins C and E, phenolic acids, and flavonoids present in cereals show a reduction in the oxidative stress involved in the pathogenesis of hypertension. The influence of ACE on hypertension and COVID-19 has turned into a primary point of control and treatment from the nutritional perspective. The objective of this work was to describe the inhibitory effect of the angiotensin-converting enzyme that the bioactive compounds present in cereals possess in order to lower blood pressure and how their consumption could be associated with reducing the virulence of COVID-19.

8.
Food Res Int ; 102: 575-587, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29195988

RESUMO

Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation.


Assuntos
Anti-Infecciosos/administração & dosagem , Microbiologia de Alimentos/métodos , Inocuidade dos Alimentos/métodos , Cápsulas , Portadores de Fármacos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Armazenamento de Alimentos/métodos , Microscopia Eletrônica de Varredura
9.
J Food Sci Technol ; 52(7): 4066-77, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26139872

RESUMO

A central composite design using RMS (Response Surface Methodology) successfully described the effect of independent variables (feed moisture, die temperature and soybean proportion) on the specific parameters of product quality as expansion index (EI), water absorption index (WAI), water solubility index (WSI) and total color difference (ΔE) studied. The regression model indicated that EI, WAI, WSI and ΔE were significant (p < 0.05) with coefficients of determination (R(2)) of 0.7371, 0.7588, 0.7622, 0.8150, respectively. The optimized processing conditions were obtained with 25.8 % feed moisture, 160 °C die temperature and 58 %/42 % soybean/corn proportion. It was not found statistically changes in amino acid profile due to extrusion process. The electrophoretic profile of extruded soybean/corn mix presented low intensity molecular weight bands, compared to the unprocessed sample. The generation of low molecular weight polypeptides was associated to an increased in In vitro protein digestibility (IVPD) of the extrudate. The FTIR spectra of the soybean/corn mix before and after extrusion showed that the α-helix structure remained unchanged after extrusion. However, the band associated with ß-sheet structure showed to be split into two bands at 1624 and 1640 cm(-1) . The changes in the ß-sheet structures may be also associated to the increased in IVPD in the extruded sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA