Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nature ; 533(7601): 58-63, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27120167

RESUMO

The Bacillus thuringiensis δ-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. Here we have developed a phage-assisted continuous evolution selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively bound by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (dissociation constant Kd = 11-41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome insect Bt toxin resistance and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects.


Assuntos
Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Molecular Direcionada/métodos , Endotoxinas/genética , Endotoxinas/metabolismo , Variação Genética/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Resistência a Inseticidas , Mariposas/fisiologia , Controle Biológico de Vetores/métodos , Sequência de Aminoácidos , Animais , Toxinas de Bacillus thuringiensis , Bacteriófagos/genética , Biotecnologia , Caderinas/metabolismo , Morte Celular , Sequência Consenso , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Inseticidas/metabolismo , Dados de Sequência Molecular , Mariposas/citologia , Mutagênese/genética , Plantas Geneticamente Modificadas , Ligação Proteica/genética , Estabilidade Proteica , Seleção Genética
2.
Insect Biochem Mol Biol ; 38(11): 1008-15, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18930820

RESUMO

The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylation. The conversion of CYP6A1 to its P420 form was decreased by the addition of apo-b5. The effects of cytochrome b5 may involve allosteric modification of the P450 enzyme that modify the conformation of the active site. The overall stoichiometry of the P450 reaction was substrate-dependent. High uncoupling of CYP6A1 was observed with generation of hydrogen peroxide, in excess over the concomitant testosterone hydroxylation or heptachlor epoxidation. Inclusion of cytochrome b5 in the reconstituted system improved efficiency of oxygen consumption and electron utilization from NADPH, or coupling of the P450 reaction. Depending on the reconstitution conditions, coupling efficiency varied from 8 to 25% for heptachlor epoxidation, and from 11 to 70% for testosterone hydroxylation. Because CYP6A1 is a P450 involved in insecticide resistance, this suggests that xenobiotic metabolism by constitutively overexpressed P450s may be linked to significant oxidative stress in the cell that may carry a fitness cost.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/metabolismo , Moscas Domésticas/enzimologia , Proteínas de Insetos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Animais , Catálise , Cromatografia Líquida de Alta Pressão , Heptacloro/metabolismo , Moscas Domésticas/metabolismo , Hidroxilação , Testosterona/metabolismo
3.
Proteomics ; 8(16): 3397-405, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18690651

RESUMO

Plastids are functionally and structurally diverse organelles responsible for numerous biosynthetic reactions within the plant cell. Plastids from embryos have a range of properties depending upon the plant source but compared to other plastid types are poorly understood and therefore, we term them embryoplasts. Isolating intact plastids from developing embryos is challenging due to large starch granules within the stroma and the prevalence of nonplastid, storage organelles (oil bodies and protein storage vacuoles) which compromise plastid integrity and purity, respectively. To characterize rapeseed embryoplasts it was necessary to develop an improved isolation procedure. A new method is presented for the isolation of intact plastids from developing embryos of Brassica napus seeds. Intactness and purity of embryoplast preparations was determined using phase-contrast and transmission electron microscopy, immunoblotting, and multidimensional protein identification technology (MudPIT) MS/MS. Eighty nonredundant proteins were identified by MudPIT analysis of embryoplast preparations. Approximately 53% of these proteins were components of photosystem, light harvesting, cytochrome b/f, and ATP synthase complexes, suggesting ATP and NADPH production are important functions for this plastid type.


Assuntos
Brassica napus/metabolismo , Proteínas de Plantas/análise , Plastídeos/metabolismo , Proteômica/métodos , Sementes/metabolismo , Brassica napus/crescimento & desenvolvimento , Brassica napus/ultraestrutura , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Microscopia Eletrônica de Transmissão , Complexo de Proteínas do Centro de Reação Fotossintética/análise , Complexo de Proteínas do Centro de Reação Fotossintética/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Plastídeos/ultraestrutura , Sementes/crescimento & desenvolvimento , Sementes/ultraestrutura
4.
Drug Metab Rev ; 39(2-3): 599-617, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17786641

RESUMO

Interactions between a soluble form of microsomal cytochrome b(5) (b(5)) from Musca domestica (housefly) and Bacillus megaterium flavocytochrome P450 BM3 and its component reductase (CPR), heme (P450) and FAD/NADPH-binding (FAD) domains were analyzed by a combination of steady-state and stopped-flow kinetics methods, and optical spectroscopy techniques. The high affinity binding of b(5) to P450 BM3 induced a low-spin to high-spin transition in the P450 heme iron (K(d) for b(5) binding = 0.44 microM and 0.72 microM for the heme domain and intact flavocytochrome, respectively). The b(5) had modest inhibitory effects on steady-state turnover of P450 BM3 with fatty acids, and the ferrous-carbon monoxy P450 complex was substantially stabilized on binding b(5). Single turnover reduction of b(5) by BM3 using stopped-flow absorption spectroscopy (k(lim) = 116 s(-1)) was substantially faster than steady-state reduction of b(5) by P450 BM3 (or its CPR and FAD domains), indicating rate-limiting step(s) other than BM3 flavin-to-b(5) heme electron transfer in the steady-state reaction. Steady-state b(5) reduction by P450 BM3 was considerably accelerated at high ionic strength. Pre-reduction of P450 BM3 by NADPH decreased the k(lim) for b(5) reduction approximately 10-fold, and also resulted in a lag phase in steady-state b(5) reduction that was likely due to BM3 conformational perturbations sensitive to the reduction state of the flavocytochrome. Ferrous b(5) could not reduce the ferric P450 BM3 heme domain under anaerobic conditions, consistent with heme iron reduction potentials of the two proteins. However, rapid oxidation of both hemoproteins occurred on aeration of the ferrous protein mixture (and despite the much slower autoxidation rate of b(5) in isolation), consistent with electron transfer occurring from b(5) to the oxyferrous P450 BM3 in the complex. The results demonstrate that strong interactions occur between a eukaryotic b(5) and a model prokaryotic P450. Binding of b(5) perturbs BM3 heme iron spin-state equilibrium, as is seen in many physiologically relevant b(5) interactions with eukaryotic P450s. These results are consistent with the conservation of structure of P450s (particularly at the heme proximal face) between prokaryotes and eukaryotes, and may point to as yet undiscovered roles for b(5)-like proteins in the control of activities of certain prokaryotic P450s.


Assuntos
Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromos b5/metabolismo , Oxigenases de Função Mista/metabolismo , Animais , Bacillus megaterium , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Citocromos b5/química , Citocromos b5/isolamento & purificação , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/metabolismo , Heme/metabolismo , Moscas Domésticas , Cinética , Ácidos Láuricos/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/isolamento & purificação , NADP/fisiologia , NADPH-Ferri-Hemoproteína Redutase , Oxirredução , Conformação Proteica , Espectrofotometria Ultravioleta , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA