Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 3(8): e3082, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-18769476

RESUMO

Multi-modal visuo-tactile stimulation of the type performed in the rubber hand illusion can induce the brain to temporarily incorporate external objects into the body image. In this study we show that audio-visual stimulation combined with mental imagery more rapidly elicits an elevated physiological response (skin conductance) after an unexpected threat to a virtual limb, compared to audio-visual stimulation alone. Two groups of subjects seated in front of a monitor watched a first-person perspective view of slow movements of two virtual arms intercepting virtual balls rolling towards the viewer. One group was instructed to simply observe the movements of the two virtual arms, while the other group was instructed to observe the virtual arms and imagine that the arms were their own. After 84 seconds the right virtual arm was unexpectedly "stabbed" by a knife and began "bleeding". This aversive stimulus caused both groups to show a significant increase in skin conductance. In addition, the observation-with-imagery group showed a significantly higher skin conductance (p<0.05) than the observation-only group over a 2-second period shortly after the aversive stimulus onset. No corresponding change was found in subjects' heart rates. Our results suggest that simple visual input combined with mental imagery may induce the brain to measurably temporarily incorporate external objects into its body image.


Assuntos
Resposta Galvânica da Pele/fisiologia , Interface Usuário-Computador , Agressão , Ansiedade , Braço/fisiologia , Coerção , Humanos , Ilusões , Imaginação , Dor/fisiopatologia , Estimulação Luminosa , Estimulação Física , Tato/fisiologia , Percepção Visual/fisiologia
2.
Med Biol Eng Comput ; 45(9): 901-7, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17687578

RESUMO

We present a virtual reality (VR)-based motor neurorehabilitation system for stroke patients with upper limb paresis. It is based on two hypotheses: (1) observed actions correlated with self-generated or intended actions engage cortical motor observation, planning and execution areas ("mirror neurons"); (2) activation in damaged parts of motor cortex can be enhanced by viewing mirrored movements of non-paretic limbs. We postulate that our approach, applied during the acute post-stroke phase, facilitates motor re-learning and improves functional recovery. The patient controls a first-person view of virtual arms in tasks varying from simple (hitting objects) to complex (grasping and moving objects). The therapist adjusts weighting factors in the non-paretic limb to move the paretic virtual limb, thereby stimulating the mirror neuron system and optimizing patient motivation through graded task success. We present the system's neuroscientific background, technical details and preliminary results.


Assuntos
Modalidades de Fisioterapia , Reabilitação do Acidente Vascular Cerebral , Adolescente , Adulto , Criança , Humanos , Destreza Motora , Projetos Piloto , Recuperação de Função Fisiológica , Extremidade Superior , Interface Usuário-Computador , Jogos de Vídeo , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA