Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400043, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613338

RESUMO

The compressibility of soft colloids influences their phase behavior and flow properties, especially in concentrated suspensions. Particle compressibility, which is proportional to the reciprocal of the bulk modulus K, is a key parameter for soft polymer-based particles that can be compressed in crowded environments. Here, microgels with different degrees of cross-linking, i.e., softness, are investigated below and above their volume phase transition temperature (VPTT). By combining molecular dynamics simulations with small-angle neutron scattering with contrast variation, a change in the particle bulk moduli of two orders of magnitude is observed. The degree of cross-linking has a significant impact on the bulk modulus of the swollen microgel, while above the VPTT the values of K are almost independent of the cross-linking density. The excellent agreement between experimental results and simulations also highlight that the model microgels from computer simulations possess both the internal architecture and the elastic properties of real polymeric networks. This paves the way to a systematic use of simulations to investigate the behavior of dense microgel suspensions below and above their VPTT.

2.
Nano Lett ; 22(6): 2412-2418, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35258981

RESUMO

Particle size disparities suppress crystallization. However, soft deformable nanogels can change the size of the larger particles in suspension and crystallize even at a high initial size-polydispersity. Using neutron scattering with contrast variation, the response of individual nanogels in crowded environments was probed, and an increase of the parameter describing size-polydispersity was found, which is often interpreted as deformation. Here, computer simulations are used to generate deformed nanogels and the corresponding form factor. The data are fitted with the spherical model used to analyze scattering data. The fits show the same qualitative increase of the parameter related to the size-polydispersity with increasing particle deformation. Starting from the simulated deformed spheres, we also reproduce experimental scattering data. A further analysis of the particle shows that the size disparities between nanogels do not increase significantly. In contrast, their shapes strongly vary from one nanogel to the other.


Assuntos
Nanogéis , Cristalização , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA