Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Blood ; 143(11): 953-966, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38096358

RESUMO

ABSTRACT: Relapse after complete remission (CR) remains the main cause of mortality after allogeneic stem cell transplantation for hematological malignancies and, therefore, improved biomarkers for early prediction of relapse remains a critical goal toward development and assessment of preemptive relapse treatment. Because the significance of cancer stem cells as a source of relapses remains unclear, we investigated whether mutational screening for persistence of rare cancer stem cells would enhance measurable residual disease (MRD) and early relapse prediction after transplantation. In a retrospective study of patients who relapsed and patients who achieved continuous-CR with myelodysplastic syndromes and related myeloid malignancies, combined flow cytometric cell sorting and mutational screening for persistence of rare relapse-initiating stem cells was performed in the bone marrow at multiple CR time points after transplantation. In 25 CR samples from 15 patients that later relapsed, only 9 samples were MRD-positive in mononuclear cells (MNCs) whereas flowcytometric-sorted hematopoietic stem and progenitor cells (HSPCs) were MRD-positive in all samples, and always with a higher variant allele frequency than in MNCs (mean, 97-fold). MRD-positivity in HSPCs preceded MNCs in multiple sequential samples, in some cases preceding relapse by >2 years. In contrast, in 13 patients in long-term continuous-CR, HSPCs remained MRD-negative. Enhanced MRD sensitivity was also observed in total CD34+ cells, but HSPCs were always more clonally involved (mean, 8-fold). In conclusion, identification of relapse-initiating cancer stem cells and mutational MRD screening for their persistence consistently enhances MRD sensitivity and earlier prediction of relapse after allogeneic stem cell transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Transplante Homólogo , Estudos Retrospectivos , Recidiva Local de Neoplasia , Resposta Patológica Completa , Doença Crônica , Células-Tronco Neoplásicas/patologia , Recidiva , Neoplasia Residual/diagnóstico , Neoplasia Residual/patologia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia
3.
Eur J Immunol ; 49(3): 454-461, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30664244

RESUMO

An experimental system where defined alterations in gene function or gene expression levels in primary B cells would result in the development of transformed plasma cells in vitro would be useful in order to facilitate studies of the underlying molecular mechanisms of plasma cell malignancies. Here, such a system is described in which primary murine B cells rapidly become transformed into surface CD138+ , IgM-/low , CD19- IgM-secreting plasma cells as a result of expression of the transcription factors IRF4 and MYC together with simultaneous expression of BMI1, mutated p53 or silencing of p19Arf , and suppression of intrinsic apoptosis through expression of BCLXL. Analysis of gene expression patterns revealed that this combination of transforming genes resulted in expression of a number of genes previously associated with terminally differentiated B cells (plasma cells) and myeloma cells, whereas many genes associated with mature B cells and B-cell lymphomas were not expressed. Upon transplantation, the transformed cells preferentially localized to the bone marrow, presenting features of a plasma cell malignancy of the IgM isotype. The present findings may also be applicable in the development of novel methods for production of monoclonal antibodies.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular/imunologia , Transformação Celular Neoplásica/imunologia , Linfoma de Células B/imunologia , Plasmócitos/imunologia , Animais , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Linfócitos B/metabolismo , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Camundongos , Plasmócitos/metabolismo , Plasmócitos/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/imunologia , Proteínas Proto-Oncogênicas c-myc/metabolismo
4.
Eur J Immunol ; 49(3): 375-385, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281155

RESUMO

Increased expression of the oncogene MYC is a common feature of many B-cell malignancies, however MYC overexpression by itself is not sufficient for transformation, and additional genetic events are required, although the exact nature of these remains unknown. In patients and in transgenic mouse models, oncogenic transformation may occur in B cells at various differentiation stages interacting with complex microenvironments. B-cell oncogenesis often occurs after prolonged periods of time, making it difficult to accurately identify the genetic events required for transformation. An in vitro system, where malignant transformation of primary B cells could be analyzed, would facilitate the identification of genetic events required for transformation. Here, we describe such a system and show that primary murine B cells rapidly become transformed upon forced expression of MYC, in conjunction with simultaneous inhibition of the ARF/p53 axis via overexpression of BMI1, as well as through downregulation of p19ARF or expression of a dominant-negative p53 and suppression of intrinsic apoptosis through overexpression of BCLXL or MCL1. Established tumor cells remained addicted to expression of the lymphoma-inducing genes. In mice, transformed cells rapidly established fatal B-cell lymphomas. Our results suggest that transformation of normal mature B cells into lymphomas can occur as a consequence of three defined events.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Transformação Celular Neoplásica/imunologia , Linfoma de Células B/imunologia , Proteínas Proto-Oncogênicas c-myc/imunologia , Proteína Supressora de Tumor p53/imunologia , Animais , Apoptose/genética , Linfócitos B/metabolismo , Transformação Celular Neoplásica/genética , Expressão Gênica/imunologia , Humanos , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/imunologia , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Oncotarget ; 9(30): 21396-21410, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29765548

RESUMO

Peripheral T-cell lymphoma is an aggressive non-Hodgkin's lymphoma characterized by excessive proliferation of transformed mature T cells. The number and nature of genetic aberrations required and sufficient for transformation of normal T cells into lymphomas is unknown. Here, using a combinatorial in vitro-approach, we demonstrate that overexpression of MYC together with activated AKT in conditions of inhibition of intrinsic apoptosis rapidly resulted in transformation of mature mouse T cells with a frequency approaching 100%. Injection of transformed cells into mice resulted in rapid development of aggressive T cell lymphoma, characterized by spread to several organs, destruction of tissue architecture and rapid death of the animals. TcR-sequencing revealed a polyclonal repertoire of tumor cells indicating that co-expression of MYC, activated AKT and BCLXL is sufficient for tumor transformation and do not require acquisition of additional genetic events. When analyzing cells with inducible expression we found that proliferation of transformed T cells required sustained expression of both MYC and AKT. AKT exerted a dual function as it inhibited induction of, and promoted exit from, cellular quiescence and contributed to inhibion of apoptosis. Downregulation of AKT and/or MYC together with BCLXL resulted in rapid and complete elimination of cells through induction of apoptotic cell death.

6.
Nature ; 554(7690): 106-111, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298288

RESUMO

Rare multipotent haematopoietic stem cells (HSCs) in adult bone marrow with extensive self-renewal potential can efficiently replenish all myeloid and lymphoid blood cells, securing long-term multilineage reconstitution after physiological and clinical challenges such as chemotherapy and haematopoietic transplantations. HSC transplantation remains the only curative treatment for many haematological malignancies, but inefficient blood-lineage replenishment remains a major cause of morbidity and mortality. Single-cell transplantation has uncovered considerable heterogeneity among reconstituting HSCs, a finding that is supported by studies of unperturbed haematopoiesis and may reflect different propensities for lineage-fate decisions by distinct myeloid-, lymphoid- and platelet-biased HSCs. Other studies suggested that such lineage bias might reflect generation of unipotent or oligopotent self-renewing progenitors within the phenotypic HSC compartment, and implicated uncoupling of the defining HSC properties of self-renewal and multipotency. Here we use highly sensitive tracking of progenitors and mature cells of the megakaryocyte/platelet, erythroid, myeloid and B and T cell lineages, produced from singly transplanted HSCs, to reveal a highly organized, predictable and stable framework for lineage-restricted fates of long-term self-renewing HSCs. Most notably, a distinct class of HSCs adopts a fate towards effective and stable replenishment of a megakaryocyte/platelet-lineage tree but not of other blood cell lineages, despite sustained multipotency. No HSCs contribute exclusively to any other single blood-cell lineage. Single multipotent HSCs can also fully restrict towards simultaneous replenishment of megakaryocyte, erythroid and myeloid lineages without executing their sustained lymphoid lineage potential. Genetic lineage-tracing analysis also provides evidence for an important role of platelet-biased HSCs in unperturbed adult haematopoiesis. These findings uncover a limited repertoire of distinct HSC subsets, defined by a predictable and hierarchical propensity to adopt a fate towards replenishment of a restricted set of blood lineages, before loss of self-renewal and multipotency.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Animais , Antígenos CD34 , Linfócitos B/citologia , Plaquetas/citologia , Antígeno CD48/deficiência , Autorrenovação Celular , Células Eritroides/citologia , Feminino , Células-Tronco Hematopoéticas/metabolismo , Masculino , Megacariócitos/citologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Células Mieloides/citologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T/citologia
7.
J Leukoc Biol ; 96(3): 481-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24899587

RESUMO

This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions.


Assuntos
Adjuvantes Imunológicos/farmacologia , Técnicas de Cultura de Células , Células Dendríticas/efeitos dos fármacos , Pulmão/imunologia , Imagem com Lapso de Tempo/métodos , Comunicação Celular , Linhagem Celular , Movimento Celular , Quimiocina CCL2/farmacologia , Técnicas de Cocultura , Meios de Cultivo Condicionados , Citocinas/biossíntese , Citocinas/genética , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Epiteliais/citologia , Fibroblastos/citologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Pulmão/citologia , Modelos Imunológicos , Monócitos/citologia , Proteínas Recombinantes/farmacologia
8.
FEBS Lett ; 588(17): 2921-7, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24910348

RESUMO

HS-1-associated protein X-1 (HAX-1) is a multi-functional protein that has been implicated in the regulation of apoptosis, cell motility and calcium homeostasis. In the present study, we set out to assess the postulated functional resemblance of HAX-1 to the BCL-2 family of anti-apoptotic proteins using non-transformed, cytokine-dependent murine bone marrow cells as a model system. BCL-X(L), but not HAX-1 protected against cytokine withdrawal-induced apoptosis while HAX-1 and BCL-X(L) significantly reduced thapsigargin-triggered (calcium-dependent) apoptosis. The data argue in favor of cell type- and stimulus-specific roles of HAX-1 in regulation of cell survival.


Assuntos
Apoptose , Células da Medula Óssea/citologia , Citocinas/metabolismo , Proteínas/metabolismo , Proteína bcl-X/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Tapsigargina/farmacologia
9.
Leukemia ; 27(4): 889-896, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23070040

RESUMO

Refractory anemia with ring sideroblasts (RARS) is characterized by mitochondrial ferritin (FTMT) accumulation and markedly suppressed expression of the iron transporter ABCB7. To test the hypothesis that ABCB7 is a key mediator of ineffective erythropoiesis of RARS, we modulated its expression in hematopoietic cells. ABCB7 up and downregulation did not influence growth and survival of K562 cells. In normal bone marrow, ABCB7 downregulation reduced erythroid differentiation, growth and colony formation, and resulted in a gene expression pattern similar to that observed in intermediate RARS erythroblasts, and in the accumulation of FTMT. Importantly, forced ABCB7 expression restored erythroid colony growth and decreased FTMT expression level in RARS CD34+ marrow cells. Mutations in the SF3B1 gene, a core component of the RNA splicing machinery, were recently identified in a high proportion of patients with RARS and 11 of the 13 RARS patients in this study carried this mutation. Interestingly, ABCB7 exon usage differed between normal bone marrow and RARS, as well as within the RARS cohort. In addition, SF3B1 silencing resulted in downregulation of ABCB7 in K562 cells undergoing erythroid differentiation. Our findings support that ABCB7 is implicated in the phenotype of acquired RARS and suggest a relation between SF3B1 mutations and ABCB7 downregulation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Anemia Refratária/genética , Anemia Sideroblástica/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Regulação para Baixo , Éxons , Feminino , Citometria de Fluxo , Inativação Gênica , Humanos , Imuno-Histoquímica , Células K562 , Masculino , Pessoa de Meia-Idade , Fenótipo , Splicing de RNA , Reação em Cadeia da Polimerase em Tempo Real
10.
EMBO J ; 32(1): 86-99, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23222484

RESUMO

Infection of macrophages by bacterial pathogens can trigger Toll-like receptor (TLR) activation as well as Nod-like receptors (NLRs) leading to inflammasome formation and cell death dependent on caspase-1 (pyroptosis). Complicating the study of inflammasome activation is priming. Here, we develop a priming-free NLRC4 inflammasome activation system to address the necessity and role of priming in pyroptotic cell death and damage-associated molecular pattern (DAMP) release. We find pyroptosis is not dependent on priming and when priming is re-introduced pyroptosis is unaffected. Cells undergoing unprimed pyroptosis appear to be independent of mitochondrial involvement and do not produce inflammatory cytokines, nitrous oxide (NO), or reactive oxygen species (ROS). Nevertheless, they undergo an explosive cell death releasing a chemotactic isoform of the DAMP high mobility group protein box 1 (HMGB1). Importantly, priming through surface TLRs but not endosomal TLRs during pyroptosis leads to the release of a new TLR4-agonist cysteine redox isoform of HMGB1. These results show that pyroptosis is dominant to priming signals and indicates that metabolic changes triggered by priming can affect how cell death is perceived by the immune system.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/metabolismo , Proteína HMGB1/metabolismo , Macrófagos/imunologia , Proteína Inibidora de Apoptose Neuronal/metabolismo , Receptores Toll-Like/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Apoptose , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Cálcio/agonistas , Proteínas de Ligação ao Cálcio/imunologia , Morte Celular , Linhagem Celular , Expressão Gênica , Proteína HMGB1/análise , Interações Hospedeiro-Patógeno , Inflamassomos/imunologia , Inflamassomos/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/microbiologia , Macrófagos/fisiologia , Camundongos , Dados de Sequência Molecular , Proteína Inibidora de Apoptose Neuronal/agonistas , Proteína Inibidora de Apoptose Neuronal/imunologia , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Receptores Toll-Like/imunologia
11.
PLoS One ; 7(2): e31366, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393362

RESUMO

Myc plays an important role in tumor development, including acute myeloid leukemia (AML). However, MYC is also a powerful inducer of apoptosis, which is one of the major failsafe programs to prevent cancer development. To clarify the relative importance of the extrinsic (death receptor-mediated) versus the intrinsic (mitochondrial) pathway of apoptosis in MYC-driven AML, we coexpressed MYC together with anti-apoptotic proteins of relevance for AML; BCL-X(L)/BCL-2 (inhibiting the intrinsic pathway) or FLIP(L) (inhibiting the extrinsic pathway), in hematopoietic stems cells (HSCs). Transplantation of HSCs expressing MYC into syngeneic recipient mice resulted in development of AML and T-cell lymphomas within 7-9 weeks as expected. Importantly, coexpression of MYC together with BCL-X(L)/BCL-2 resulted in strongly accelerated kinetics and favored tumor development towards aggressive AML. In contrast, coexpression of MYC and FLIP(L) did neither accelerate tumorigenesis nor change the ratio of AML versus T-cell lymphoma. However, a change in distribution of immature CD4(+)CD8(+) versus mature CD4(+) T-cell lymphoma was observed in MYC/FLIP(L) mice, possibly as a result of increased survival of the CD4+ population, but this did not significantly affect the outcome of the disease. In conclusion, our findings provide direct evidence that BCL-X(L) and BCL-2 but not FLIP(L) acts in synergy with MYC to drive AML development.


Assuntos
Apoptose , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Cinética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Modelos Biológicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína bcl-X/metabolismo
12.
Proc Natl Acad Sci U S A ; 107(1): 58-63, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19966300

RESUMO

The MYC and RAS oncogenes are frequently activated in cancer and, together, are sufficient to transform rodent cells. The basis for this cooperativity remains unclear. We found that although Ras interfered with Myc-induced apoptosis, Myc repressed Ras-induced senescence, together abrogating two main barriers of tumorigenesis. Inhibition of cellular senescence required phosphorylation of Myc at Ser-62 by cyclin E/cyclin-dependent kinase (Cdk) 2. Cdk2 interacted with Myc at promoters, where it affected Myc-dependent regulation of genes, including Bmi-1, p16, p21, and hTERT, which encode proteins known to control senescence. Repression of senescence by Myc was abrogated by the Cdk inhibitor p27Kip1, which is induced by antiproliferative signals like IFN-gamma or by pharmacological inhibitors of Cdk2 but not by inhibitors of other Cdks. In contrast, a phospho-mimicking Myc-S62D mutant was resistant to these manipulations. Inhibition of cyclin E/Cdk2 reversed the senescence-associated gene expression pattern imposed by Myc/cyclin E/Cdk2. This indicates a role of Cdk2 as a transcriptional cofactor and activator of the antisenescence function of Myc and provides mechanistic insight into the Myc-p27Kip1 antagonism. Finally, our findings highlight that pharmacological inhibition of Cdk2 activity is a potential therapeutical principle for cancer therapy, in particular for tumors with activated Myc or Ras.


Assuntos
Transformação Celular Neoplásica/metabolismo , Senescência Celular/fisiologia , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Ciclina E/genética , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Interferon gama/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Ratos , Serina/metabolismo , Proteínas ras/genética
13.
J Immunol ; 178(8): 5018-27, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17404284

RESUMO

Transgenic mice were generated expressing NK1.1, an NK cell-associated receptor, under control of the human CD2 promoter. Unexpectedly, one of the founder lines, Tg66, showed a marked defect in thymic development characterized by disorganized architecture and small size. Mapping of the transgene insertion by fluorescence in situ hybridization revealed integration in chromosome 2, band G. Already from postnatal day 3, the thymic architecture was disturbed with a preferential loss of cortical thymic epithelial cells, a feature that became more pronounced over time. Compared with wild-type mice, total thymic cell numbers decreased dramatically between 10 and 20 days of age. Thymocytes isolated from adult Tg66 mice were predominantly immature double-negative cells, indicating a block in thymic development at an early stage of differentiation. Consequently, Tg66 mice had reduced numbers of peripheral CD4(+) and CD8(+) T cells. Bone marrow from Tg66 mice readily reconstituted thymi of irradiated wild-type as well as RAG-deficient mice. This indicates that the primary defect in Tg66 mice resided in nonhemopoietic stromal cells of the thymus. The phenotype is observed in mice heterozygous for the insertion and does not resemble any known mutations affecting thymic development. Preliminary studies in mice homozygous for transgene insertion reveal a more accelerated and pronounced phenotype suggesting a semidominant effect. The Tg66 mice may serve as a useful model to identify genes regulating thymic epithelial cell differentiation, thymic development, and function.


Assuntos
Antígenos de Superfície/genética , Lectinas Tipo C/genética , Timo/anormalidades , Animais , Antígenos Ly , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Células Epiteliais/citologia , Queratina-8/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Insercional , Subfamília B de Receptores Semelhantes a Lectina de Células NK , Fatores de Transcrição Box Pareados/análise , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/análise , Receptores de Antígenos de Linfócitos T gama-delta/análise , Timo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA