Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Redox Biol ; 64: 102803, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392516

RESUMO

Inflammatory bowel disease (IBD) is an immune-mediated gut dysfunction, which might also be associated with an inflammatory phenotype in the liver. It is known that the nutritional intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) is inversely correlated to the severity and occurrence of IBD. In order to investigate whether n-3 PUFA can also reduce liver inflammation and oxidative liver damage due to colon inflammation, we explored the dextran sulfate sodium (DSS)-induced colitis model in wild-type and fat-1 mice with endogenously increased n-3 PUFA tissue content. Besides confirming previous data of alleviated DSS-induced colitis in the fat-1 mouse model, the increase of n-3 PUFA also resulted in a significant reduction of liver inflammation and oxidative damage in colitis-affected fat-1 mice as compared to wild-type littermates. This was accompanied by a remarkable increase of established inflammation-dampening n-3 PUFA oxylipins, namely docosahexaenoic acid-derived 19,20-epoxydocosapentaenoic acid and eicosapentaenoic acid-derived 15-hydroxyeicosapentaenoic acid and 17,18-epoxyeicosatetraenoic acid. Taken together, these observations demonstrate a strong inverse correlation between the anti-inflammatory lipidome derived from n-3 PUFA and the colitis-triggered inflammatory changes in the liver by reducing oxidative liver stress.


Assuntos
Colite , Ácidos Graxos Ômega-3 , Doenças Inflamatórias Intestinais , Camundongos , Animais , Camundongos Transgênicos , Ácidos Graxos Ômega-3/efeitos adversos , Colite/induzido quimicamente , Colite/genética , Inflamação/genética , Fígado , Estresse Oxidativo
2.
Aging Dis ; 14(1): 184-203, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36818570

RESUMO

Lipofuscin (LF) accumulates during lifetime in the retinal pigment epithelium (RPE) and is thought to play a crucial role in intermediate and late age-related macular degeneration (AMD). In an attemt to simulate aged retina and to study response of retinal microglia and RPE cells to LF, we injected a suspension of LF into the subretinal space of adult mice. LF suspension was obtained from human donor eyes. Subretinal injection of PBS or sham injection served as a control. Eyes were inspected by autofluorescence and optical coherence tomography, by electroretinography and on histological and ultrastructural levels. Levels of cytokine mRNA were determined by quantitative PCR separately in the RPE/choroid complex and in the retina. After injection of LF, microglial cells migrated quickly into the subretinal space to close proximity to RPE cells and phagocytosed LF particles. Retinal function was affected only slightly by LF within the first two weeks. After longer time, RPE cells showed clear signs of melanin loss and degradation. Levels of mRNA of inflammatory cytokines increased sharply after injection of both PBS and LF and were higher in the RPE/choroid complex than in the retina and were slightly higher after LF injection. In conclusion, subretinal injection of LF causes an activation of microglial cells and their migration into subretinal space, enhanced expression of inflammatory cytokines and a gradual degradation of RPE cells. These features are found also in an aging retina, and subretinal injection of LF could be a model for intermediate and late AMD.

3.
Aging Dis ; 14(1): 184-203, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36818572

RESUMO

Lipofuscin (LF) accumulates during lifetime in the retinal pigment epithelium (RPE) and is thought to play a crucial role in intermediate and late age-related macular degeneration (AMD). In an attemt to simulate aged retina and to study response of retinal microglia and RPE cells to LF, we injected a suspension of LF into the subretinal space of adult mice. LF suspension was obtained from human donor eyes. Subretinal injection of PBS or sham injection served as a control. Eyes were inspected by autofluorescence and optical coherence tomography, by electroretinography and on histological and ultrastructural levels. Levels of cytokine mRNA were determined by quantitative PCR separately in the RPE/choroid complex and in the retina. After injection of LF, microglial cells migrated quickly into the subretinal space to close proximity to RPE cells and phagocytosed LF particles. Retinal function was affected only slightly by LF within the first two weeks. After longer time, RPE cells showed clear signs of melanin loss and degradation. Levels of mRNA of inflammatory cytokines increased sharply after injection of both PBS and LF and were higher in the RPE/choroid complex than in the retina and were slightly higher after LF injection. In conclusion, subretinal injection of LF causes an activation of microglial cells and their migration into subretinal space, enhanced expression of inflammatory cytokines and a gradual degradation of RPE cells. These features are found also in an aging retina, and subretinal injection of LF could be a model for intermediate and late AMD.

4.
Redox Biol ; 57: 102464, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152485

RESUMO

Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.

5.
Antioxidants (Basel) ; 10(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804819

RESUMO

Non-alcoholic fatty liver disease (NAFLD), as a consequence of overnutrition caused by high-calorie diets, results in obesity and disturbed lipid homeostasis leading to hepatic lipid droplet formation. Lipid droplets can impair hepatocellular function; therefore, it is of utmost importance to degrade these cellular structures. This requires the normal function of the autophagic-lysosomal system and the ubiquitin-proteasomal system. We demonstrated in NZO mice, a polygenic model of obesity, which were compared to C57BL/6J (B6) mice, that a high-fat diet leads to obesity and accumulation of lipid droplets in the liver. This was accompanied by a loss of autophagy efficiency whereas the activity of lysosomal proteases and the 20S proteasome remained unaffected. The disturbance of cellular protein homeostasis was further demonstrated by the accumulation of 3-nitrotyrosine and 4-hydroxynonenal modified proteins, which are normally prone to degradation. Therefore, we conclude that fat accumulation in the liver due to a high-fat diet is associated with a failure of autophagy and leads to the disturbance of proteostasis. This might further contribute to lipid droplet stabilization and accumulation.

6.
Int J Med Microbiol ; 311(4): 151500, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33813306

RESUMO

BACKGROUND: The number of people above the age of 60 years is raising world-wide being associated with an increase in the prevalence of aging-associated impairments and even diseases. Recent studies suggest that aging is associated with alterations in bacterial endotoxin levels and that these changes may add to low-grade inflammation, the so-called 'inflammaging', and aging-associated liver degeneration. However, mechanisms involved, and especially, the interaction of intestinal microbiota and barrier in the development of aging-associated inflammation and liver degeneration have not been fully understood. OBJECTIVE: The aim of the present study was to determine if intestinal microbiota composition changes with age and if these alterations are associated with changes of markers of intestinal barrier function and the development of inflammation and liver degeneration. METHODS: Blood, liver, small and large intestinal tissue of male 2-, 15-, 24- and 30-months old C57BL/6 mice fed standard chow were obtained. Intestinal microbiota composition, expression levels of antimicrobial peptides in small intestine and markers of intestinal barrier function were measured. Furthermore, indices of liver damage, inflammation and expression levels of lipopolysaccharide binding protein (Lbp) as well as of toll-like receptors (Tlr) 1-9 in liver tissue were assessed. RESULTS: Pairwise comparisons of the microbial community in the small intestine showed differences between 2- and 24-, 15- and 24-, as well as 15- and 30-months old animals while Shannon's diversity, species richness and evenness indexes did not differ in both small and large intestine, respectively, between age groups. Concentrations of nitric oxide were significantly lower in small intestine of 15-, 24- and 30-months old mice compared to 2-months old mice while mRNA expression of the antimicrobial peptides defensin alpha 1 and lysozyme 1 was unchanged. In contrast, in liver tissue, older age of animals was associated with increasing inflammation and the development of fibrosis in 24- and 30-months old mice. Numbers of inflammatory foci and neutrophils in livers of 24- and 30-months old mice were significantly higher compared to 2-months old mice. These alterations were also associated with higher endotoxin levels in plasma as well as an increased mRNA expression of Lbp and Tlr1, Tlr2, Tlr4, Tlr6 and Tlr9 in livers in older mice. CONCLUSION: Despite no consistent and robust changes of microbiota composition in small and/or large intestine of mice of different age were observed, our data suggest that alterations of markers of intestinal barrier function in small intestine are associated with an induction of several Tlrs and beginning hepatic inflammation in older mice and increase with age.


Assuntos
Microbioma Gastrointestinal , Inflamação , Envelhecimento , Animais , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Redox Biol ; 42: 101901, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744200

RESUMO

Generation of reactive oxygen species and related oxidants is an inevitable consequence of life. Proteins are major targets for oxidation reactions, because of their rapid reaction rates with oxidants and their high abundance in cells, extracellular tissues, and body fluids. Additionally, oxidative stress is able to degrade lipids and carbohydrates to highly reactive intermediates, which eventually attack proteins at various functional sites. Consequently, a wide variety of distinct posttranslational protein modifications is formed by protein oxidation, glycoxidation, and lipoxidation. Reversible modifications are relevant in physiological processes and constitute signaling mechanisms ("redox signaling"), while non-reversible modifications may contribute to pathological situations and several diseases. A rising number of publications provide evidence for their involvement in the onset and progression of diseases as well as aging processes. Certain protein oxidation products are chemically stable and formed in large quantity, which makes them promising candidates to become biomarkers of oxidative damage. Moreover, progress in the development of detection and quantification methods facilitates analysis time and effort and contributes to their future applicability in clinical routine. The present review outlines the most important classes and selected examples of oxidative protein modifications, elucidates the chemistry beyond their formation and discusses available methods for detection and analysis. Furthermore, the relevance and potential of protein modifications as biomarkers in the context of disease and aging is summarized.


Assuntos
Estresse Oxidativo , Proteínas , Biomarcadores , Humanos , Oxirredução , Proteínas/metabolismo , Espécies Reativas de Oxigênio
8.
Biol Rev Camb Philos Soc ; 96(2): 376-393, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128331

RESUMO

Naked mole-rats express many unusual traits for such a small rodent. Their morphology, social behaviour, physiology, and ageing have been well studied over the past half-century. Many early findings and speculations about this subterranean species persist in the literature, although some have been repeatedly questioned or refuted. While the popularity of this species as a natural-history curiosity, and oversimplified story-telling in science journalism, might have fuelled the perpetuation of such misconceptions, an accurate understanding of their biology is especially important for this new biomedical model organism. We review 28 of these persistent myths about naked mole-rat sensory abilities, ecophysiology, social behaviour, development and ageing, and where possible we explain how these misunderstandings came about.


Assuntos
Ratos-Toupeira , Comportamento Social , Envelhecimento , Animais , Biologia
9.
Redox Biol ; 37: 101748, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33128997

RESUMO

Overnutrition contributes to insulin resistance, obesity and metabolic stress, initiating a loss of functional beta-cells and diabetes development. Whether these damaging effects are amplified in advanced age is barely investigated. Therefore, New Zealand Obese (NZO) mice, a well-established model for the investigation of human obesity-associated type 2 diabetes, were fed a metabolically challenging diet with a high-fat, carbohydrate restricted period followed by a carbohydrate intervention in young as well as advanced age. Interestingly, while young NZO mice developed massive hyperglycemia in response to carbohydrate feeding, leading to beta-cell dysfunction and cell death, aged counterparts compensated the increased insulin demand by persistent beta-cell function and beta-cell mass expansion. Beta-cell loss in young NZO islets was linked to increased expression of thioredoxin-interacting protein (TXNIP), presumably initiating an apoptosis-signaling cascade via caspase-3 activation. In contrast, islets of aged NZOs exhibited a sustained redox balance without changes in TXNIP expression, associated with higher proliferative potential by cell cycle activation. These findings support the relevance of a maintained proliferative potential and redox homeostasis for preserving islet functionality under metabolic stress, with the peculiarity that this adaptive response emerged with advanced age in diabetes-prone NZO mice.


Assuntos
Proteínas de Transporte , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Tiorredoxinas , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciclo Celular , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Homeostase , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Obesos , Oxirredução , Estresse Fisiológico , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
10.
Oxid Med Cell Longev ; 2020: 5497046, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308803

RESUMO

Protein homeostasis or proteostasis is an essential balance of cellular protein levels mediated through an extensive network of biochemical pathways that regulate different steps of the protein quality control, from the synthesis to the degradation. All proteins in a cell continuously turn over, contributing to development, differentiation, and aging. Due to the multiple interactions and connections of proteostasis pathways, exposure to stress conditions may cause various types of protein damage, altering cellular homeostasis and disrupting the entire network with additional cellular stress. Furthermore, protein misfolding and/or alterations during protein synthesis results in inactive or toxic proteins, which may overload the degradation mechanisms. The maintenance of a balanced proteome, preventing the formation of impaired proteins, is accomplished by two major catabolic routes: the ubiquitin proteasomal system (UPS) and the autophagy-lysosomal system. The proteostasis network is particularly important in nondividing, long-lived cells, such as neurons, as its failure is implicated with the development of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These neurological disorders share common risk factors such as aging, oxidative stress, environmental stress, and protein dysfunction, all of which alter cellular proteostasis, suggesting that general mechanisms controlling proteostasis may underlay the etiology of these diseases. In this review, we describe the major pathways of cellular proteostasis and discuss how their disruption contributes to the onset and progression of neurodegenerative diseases, focusing on the role of oxidative stress.


Assuntos
Doenças Neurodegenerativas/genética , Estresse Oxidativo/genética , Proteostase/genética , Humanos
11.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G736-G747, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32090603

RESUMO

Aging is a risk factor in the development of many diseases, including liver-related diseases. The two aims of the present study were 1) to determine how aging affects liver health in mice in the absence of any interventions and 2) if degenerations observed in relation to blood endotoxin levels are critical in aging-associated liver degeneration. Endotoxin levels and markers of liver damage, mitochondrial dysfunction, insulin resistance, and apoptosis as well as the Toll-like receptor 4 (Tlr-4) signaling cascade were studied in liver tissue and blood, respectively, of 3- and 24-mo-old male C57BL/6J mice. In a second set of experiments, 3- to 4-mo-old and 14-mo-old female lipopolysaccharide-binding protein (LBP)-/- mice and littermates fed standard chow, markers of liver damage, insulin resistance, and mitochondrial dysfunction were assessed. Plasma activity of aspartate aminotransferase and histological signs of hepatic inflammation and fibrosis were significantly higher in old C57BL/6J mice than in young animals. The number of neutrophils, CD8α-positive cells, and mRNA expression of markers of apoptosis were also significantly higher in livers of old C57BL/6J mice compared with young animals, being also associated with a significant induction of hepatic Tlr-4 and LBP expression as well as higher endotoxin levels in peripheral blood. Compared with age-matched littermates, LBP-/- mice display less signs of senescence in liver. Taken together, our data suggest that, despite being fed standard chow, old mice developed liver inflammation and beginning fibrosis and that bacterial endotoxin may play a critical role herein.NEW & NOTEWORTHY Old age in mice is associated with marked signs of liver degeneration, hepatic inflammation, and fibrosis. Aging-associated liver degeneration is associated with elevated bacterial endotoxin levels and an induction of lipopolysaccharide-binding protein (LBP) and Toll-like receptor 4-dependent signaling cascades in liver tissue. Furthermore, in old aged LBP-/- mice, markers of senescence seem to be lessened, supporting the hypothesis that bacterial endotoxin levels might be critical in aging-associated decline of liver.


Assuntos
Proteínas de Fase Aguda/metabolismo , Envelhecimento , Proteínas de Transporte/metabolismo , Endotoxinas/sangue , Cirrose Hepática/patologia , Fígado/patologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Fase Aguda/genética , Animais , Apoptose , Biomarcadores , Proteínas de Transporte/genética , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Inflamação/patologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fígado/metabolismo , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
12.
Sci Rep ; 9(1): 15112, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641278

RESUMO

Measurement and quantification of cardiomyocyte or cardiac contractions as important (patho) physiologic parameters require highly specialized and expensive setups of fully integrated hard- and software that may be very difficult to use and may also depend on highly sophisticated methods of further data evaluation. With MYOCYTER (MC) we present a complete and highly customizable open-source macro for ImageJ, enabling fast, reliable user-friendly large scale analysis extracting an extensive amount of parameters from (even multiple) video recorded contracting cells or whole hearts, gained from a very competitive experimental setup. The extracted parameters enable extensive further (statistical) analysis to identify and quantify the effects of pathologic changes or drugs. Using videos following known mathematical functions, we were able to demonstrate the accuracy of MYOCYTER's data extraction, also successfully applied the software to both cellular and animal models, introducing innovations like dynamic thresholding, automatic multi-cell recognition, "masked" evaluation and change of applied parameters even after evaluation.


Assuntos
Processamento de Imagem Assistida por Computador , Contração Miocárdica/fisiologia , Miocárdio/citologia , Software , Animais , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Daphnia/efeitos dos fármacos , Daphnia/fisiologia , Etanol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Reprodutibilidade dos Testes , Tapsigargina/farmacologia
13.
Nutr Diabetes ; 9(1): 9, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858378

RESUMO

Diet-induced hyperglycemia is described as one major contributor to the formation of advanced glycation end products (AGEs) under inflammatory conditions, crucial in type 2 diabetes progression. Previous studies have indicated high postprandial plasma AGE-levels in diabetic patients and after long-term carbohydrate feeding in animal models. Pancreatic islets play a key role in glucose metabolism; thus, their susceptibility to glycation reactions due to high amounts of dietary carbohydrates is of special interest. Therefore, diabetes-prone New Zealand Obese (NZO) mice received either a carbohydrate-free, high-fat diet (CFD) for 11 weeks or were additionally fed with a carbohydrate-rich diet (CRD) for 7 days. In the CRD group, hyperglycemia and hyperinsulinemia were induced accompanied by increasing plasma 3-nitrotyrosine (3-NT) levels, higher amounts of 3-NT and inducible nitric oxide synthase (iNOS) within pancreatic islets. Furthermore, N-ε-carboxymethyllysine (CML) was increased in the plasma of CRD-fed NZO mice and substantially higher amounts of arg-pyrimidine, pentosidine and the receptor for advanced glycation end products (RAGE) were observed in pancreatic islets. These findings indicate that a short-term intervention with carbohydrates is sufficient to form endogenous AGEs in plasma and pancreatic islets of NZO mice under hyperglycemic and inflammatory conditions.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Dieta com Restrição de Carboidratos , Dieta Hiperlipídica , Carboidratos da Dieta/administração & dosagem , Produtos Finais de Glicação Avançada/metabolismo , Ilhotas Pancreáticas/metabolismo , Obesidade/metabolismo , Animais , Glicemia/metabolismo , Hiperglicemia/metabolismo , Insulina/sangue , Células Secretoras de Insulina/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
14.
Graefes Arch Clin Exp Ophthalmol ; 257(5): 931-952, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30693383

RESUMO

PURPOSE: To examine the reaction of microglial cells (MG) when incubated with lipofuscin (LP) in vitro with emphasis on the immunological reaction of the MG toward LP and the suppression of this reaction by immunomodulatory agents. MG are involved in the pathogenesis of degenerative eye disorders such as age-related macular degeneration (AMD). LP is a heterogeneous waste material that accumulates in the retinal pigment epithelium (RPE) cells with advancing age. LP is known to have toxic effects on RPE cells and therefore an elevated LP-derived fundus autofluorescence is a risk factor for AMD development. MG in the subretinal space have been reported in eyes affected by AMD. Moreover, in senescent mice, subretinal MG were found, which display an autofluorescence that may be derived from LP uptake. METHODS: In this study, we incubated MG (BV-2 cell line and primary cells from murine brain) in vitro with LP isolated from the human RPE. We observed phagocytosis, studied cell morphologies, and analyzed the cell culture supernatants. We also investigated the effect of the immunomodulatory agents hydrocortisone (HC), minocycline, and the tripeptide TKP. RESULTS: The MG phagocytosed the LP quickly and completely. We detected highly elevated levels of pro-inflammatory cytokines (especially of IL-6, IL-23p19, TNF-α, KC, RANTES, and IL-1α) in the cell culture supernatants. Furthermore, levels of vascular endothelial growth factor (VEGF) were raised in BV-2 cells. Anti-inflammatory agents added to the cell cultures inhibited the inflammatory reaction, in particular hydrocortisone (HC). Minocycline and TKP had less impact on the cytokine release. CONCLUSION: The interaction of MG and LP could play a role in the development of retinal degeneration by triggering an inflammatory reaction and angiogenesis.


Assuntos
Lipofuscina/farmacologia , Degeneração Macular/diagnóstico , Microglia/ultraestrutura , Epitélio Pigmentado da Retina/ultraestrutura , Idoso , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Degeneração Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microscopia Eletrônica , Epitélio Pigmentado da Retina/efeitos dos fármacos
15.
Mech Ageing Dev ; 177: 46-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29580826

RESUMO

The ubiquitin-proteasomal-system (UPS) and the autophagy-lysosomal-system (ALS) are both highly susceptible for disturbances leading to the accumulation of cellular damage. A decline of protein degradation during aging results in the formation of oxidatively damaged and aggregated proteins finally resulting in failure of cellular functionality. Besides protein aggregation in response to oxidative damage, amyloids are a different type of protein aggregates able to distract proteostasis and interfere with cellular functionality. Amyloids are clearly linked to the pathogenesis of age-related degenerative diseases such as Alzheimer's disease. Human amylin is one of the peptides forming fibrils in ß-sheet conformation finally leading to amyloid formation. In contrast to rodent amylin, human amylin is prone to form amyloidogenic aggregates, proposed to play a role in the pathogenesis of Type 2 Diabetes by impairing ß-cell functionality. Since aggregates such as lipofuscin and ß-amyloid are known to impair proteostasis, it is likely to assume similar effects for human amylin. In this review, we focus on the effects of IAPP on UPS and ALS and their role in amylin degradation, since both systems play a crucial role in maintaining proteome balance thereby influencing, at least in part, cellular fate and aging.


Assuntos
Envelhecimento/metabolismo , Células Secretoras de Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteostase , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Células Secretoras de Insulina/patologia , Agregação Patológica de Proteínas/patologia
16.
Biotechnol J ; 13(5): e1700652, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29319229

RESUMO

Large amounts of data from multi-channel, high resolution, fluorescence microscopic images require tools that provide easy, customizable, and reproducible high-throughput analysis. The freeware "ImageJ" has become one of the standard tools for scientific image analysis. Since ImageJ offers recording of "macros," even a complex multi-step process can be easily applied fully automated to large numbers of images, saving both time and reducing human subjective evaluation. In this work, we present "Cyt/Nuc," an ImageJ macro, able to recognize and to compare the nuclear and cytosolic areas of tissue samples, in order to investigate distributions of immunostained proteins between both compartments, while it documents in detail the whole process of evaluation and pattern recognition. As practical example, the redistribution of the 20S proteasome, the main intracellular protease in mammalian cells, is investigated in NZO-mouse liver after feeding the animals different diets. A significant shift in proteasomal distribution between cytosol and nucleus in response to metabolic stress was revealed using "Cyt/Nuc" via automatized quantification of thousands of nuclei within minutes. "Cyt/Nuc" is easy to use and highly customizable, matches the precision of careful manual evaluation and bears the potential for quick detection of any shift in intracellular protein distribution.


Assuntos
Núcleo Celular , Técnicas Citológicas/métodos , Citosol , Processamento de Imagem Assistida por Computador/métodos , Software , Animais , Núcleo Celular/química , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/química , Citosol/metabolismo , Fígado/citologia , Camundongos , Microscopia de Fluorescência
17.
Redox Biol ; 15: 387-393, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29331666

RESUMO

Aged tissues usually show a decreased regenerative capacity accompanied by a decline in functionality. During aging pancreatic islets also undergo several morphological and metabolic changes. Besides proliferative and regenerative limitations, endocrine cells lose their secretory capacity, contributing to a decline in functional islet mass and a deregulated glucose homeostasis. This is linked to several features of aging, such as induction of cellular senescence or the formation of modified proteins, such as advanced glycation end products (AGEs) - the latter mainly examined in relation to hyperglycemia and in disease models. However, age-related changes of endocrine islets under normoglycemic and non-pathologic conditions are poorly investigated. Therefore, a characterization of pancreatic tissue sections as wells as plasma samples of wild-type mice (C57BL/6J) at various age groups (2.5, 5, 10, 15, 21 months) was performed. Our findings reveal that mice at older age are able to secret sufficient amounts of insulin to maintain normoglycemia. During aging the pancreatic islet area increased and the islet size doubled in 21 months old mice when compared to 2.5 months old mice, whereas the islet number was unchanged. This was accompanied by an age-dependent decrease in Ki-67 levels and pancreatic duodenal homeobox-1 (PDX-1), indicating a decline in proliferative and regenerative capacity of pancreatic islets with advancing age. In contrast, the number of p16Ink4a-positive nuclei within the islets was elevated starting from 10 months of age. Interestingly, AGEs accumulated exclusively in the islet blood vessels of old mice associated with increased amounts of inflammatory markers, such as the inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine (3-NT). In summary, the age-related increase in islet size and area was associated with the induction of senescence, accompanied by an accumulation of non-enzymatically modified proteins in the islet vascular system.


Assuntos
Envelhecimento/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Ilhotas Pancreáticas/metabolismo , Estresse Oxidativo/genética , Envelhecimento/genética , Envelhecimento/patologia , Animais , Glicemia , Glucose/metabolismo , Produtos Finais de Glicação Avançada/genética , Proteínas de Homeodomínio/genética , Homeostase , Insulina/metabolismo , Ilhotas Pancreáticas/patologia , Antígeno Ki-67/genética , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Transativadores/genética
18.
Mech Ageing Dev ; 170: 72-81, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28755850

RESUMO

Aging is accompanied by the accumulation of cellular damage over time in response to stress, lifestyle and environmental factors ultimately leading to age-related diseases and death. Additionally, the number of senescent cells increases with age. Senescence is most likely not a static endpoint, it represents a series of hallmarks including morphological changes, alterations in protein turnover and accumulation of protein aggregates. The importance of protein oxidation and aggregate accumulation in the progression of aging is not yet fully understood and research to what extent the accumulation of oxidized proteins has an effect on senescence and the aging process is still ongoing. To study the mechanisms of aging, the impact of senescence and the role of protein aggregates on the aging process, cell culture models are useful tools. Most notably stress induced premature senescence (SIPS) models have contributed to the identification of mechanisms involved in the aging process and helped unravel the age-related changes in proteolysis and the importance of protein aggregation. Here we review characteristics of replicative and premature senescence, how to induce most frequently used senescence models and gained knowledge on age-related changes in the major proteolytic systems.


Assuntos
Envelhecimento/metabolismo , Senescência Celular , Modelos Biológicos , Agregação Patológica de Proteínas/metabolismo , Proteólise , Envelhecimento/patologia , Animais , Humanos , Agregação Patológica de Proteínas/patologia
19.
Curr Pharm Des ; 24(44): 5245-5251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30706806

RESUMO

Aging is one of the biggest risk factors for the major prevalent diseases such as cardiovascular diseases, neurodegeneration and cancer, but due to the complex and multifactorial nature of the aging process, the molecular mechanisms underlying age-related diseases are not yet fully understood. Research has been intensive in the last years aiming to characterize the pathophysiology of aging and develop therapies to fight age-related diseases. In this context advanced glycation end products (AGEs) have received attention. AGEs, when accumulated in tissues, significantly increase the level of inflammation in the body which has long been associated with the development of cancer. Here we discuss the classical settings promoting AGE formation, as well as reduction strategies, occurrence and relevance of AGEs in cancer tissues and the role of AGE-interaction with the receptor for advanced glycation end products (RAGE) in cancer initiation and progression.


Assuntos
Carcinogênese , Produtos Finais de Glicação Avançada/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Inflamação/metabolismo , Neoplasias/patologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo
20.
Redox Biol ; 13: 550-567, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28763764

RESUMO

The production of reactive species is an inevitable by-product of metabolism and thus, life itself. Since reactive species are able to damage cellular structures, especially proteins, as the most abundant macromolecule of mammalian cells, systems are necessary which regulate and preserve a functional cellular protein pool, in a process termed "proteostasis". Not only the mammalian protein pool is subject of a constant turnover, organelles are also degraded and rebuild. The most important systems for these removal processes are the "ubiquitin-proteasomal system" (UPS), the central proteolytic machinery of mammalian cells, mainly responsible for proteostasis, as well as the "autophagy-lysosomal system", which mediates the turnover of organelles and large aggregates. Many age-related pathologies and the aging process itself are accompanied by a dysregulation of UPS, autophagy and the cross-talk between both systems. This review will describe the sources and effects of oxidative stress, preservation of cellular protein- and organelle-homeostasis and the effects of aging on proteostasis in mammalian cells.


Assuntos
Envelhecimento/metabolismo , Estresse Oxidativo , Proteostase , Animais , Autofagia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Lipofuscina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA