Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neural Transm (Vienna) ; 128(1): 83-94, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33351169

RESUMO

Approved medications for alcohol use disorder (AUD) display modest effect sizes. Pharmacotherapy aimed at the mechanism(s) by which ethanol activates the dopamine reward pathway may offer improved outcomes. Basal and ethanol-induced accumbal dopamine release in the rat involve glycine receptors (GlyR) in the nucleus accumbens (nAc). Glycine transporter 1 (GlyT-1) inhibitors, which raise extracellular glycine levels, have repeatedly been shown to decrease ethanol intake in the rat. To further explore the rational for elevating glycine levels in the treatment of AUD, this study examined accumbal extracellular glycine and dopamine levels and voluntary ethanol intake and preference in the rat, after systemic treatment with glycine. The effects of three different doses of glycine i.p. on accumbal glycine and dopamine levels were examined using in vivo microdialysis in Wistar rats. In addition, the effects of the intermediate dose of glycine on voluntary ethanol intake and preference were examined in a limited access two-bottle ethanol/water model in the rat. Systemic glycine treatment increased accumbal glycine levels in a dose-related manner, whereas accumbal dopamine levels were elevated in a subpopulation of animals, defined as dopamine responders. Ethanol intake and preference decreased after systemic glycine treatment. These results give further support to the concept of elevating central glycine levels to reduce ethanol intake and indicate that targeting the glycinergic system may represent a pharmacologic treatment principle for AUD.


Assuntos
Dopamina , Glicina , Animais , Etanol , Masculino , Microdiálise , Núcleo Accumbens , Ratos , Ratos Wistar
2.
Alcohol Clin Exp Res ; 34(1): 39-45, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19860809

RESUMO

BACKGROUND: We have previously demonstrated that strychnine-sensitive glycine receptors (GlyRs) in the nucleus accumbens (nAc) and nicotinic acetylcholine receptors (nAChRs) in the ventral tegmental area are involved in mediating ethanol (EtOH)-induced elevation of dopamine in the rat mesolimbic dopamine system. This neuronal circuitry was also demonstrated to mediate dopamine elevation in the nAc after both taurine, an endogenous agonist of GlyRs, and acamprosate, a synthetic derivate of homotaurine. The aim of this study was to investigate whether the EtOH intake-reducing effect of acamprosate involves accumbal GlyRs. METHODS: For this purpose, we used a voluntary EtOH consumption model where EtOH medium- and high-preferring rats were implanted with guide cannulae in the nAc. The animals received daily injections of acamprosate or 0.9% NaCl before accessing a bottle of 6% EtOH and a bottle of water. After 2 days, a microinjection of strychnine or vehicle preceded the daily systemic injection and bottle-access period. RESULTS: Acamprosate, but not saline, decreased EtOH intake. Pretreatment with Ringer in the nAc did not influence EtOH intake in saline or acamprosate-treated animals. Pretreatment with strychnine had no effect on EtOH intake in saline-treated animals, whereas it completely reversed the EtOH intake-reducing effect of acamprosate. CONCLUSIONS: Based on current and previous results, we suggest that acamprosate primarily interacts with accumbal GlyRs and secondarily with ventral tegmental nAChRs, in a similar manner to that previously observed with EtOH and taurine. The interaction between acamprosate and GlyRs does not only influence dopamine output in the nAc but also EtOH consumption, giving further support for our hypothesis that GlyRs are of importance in EtOH reinforcement.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/prevenção & controle , Núcleo Accumbens/metabolismo , Receptores de Glicina/metabolismo , Taurina/análogos & derivados , Acamprosato , Animais , Dopamina/metabolismo , Etanol/administração & dosagem , Etanol/antagonistas & inibidores , Masculino , Microinjeções , Núcleo Accumbens/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Ratos , Ratos Wistar , Receptores de Glicina/efeitos dos fármacos , Taurina/administração & dosagem , Taurina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA