Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Brain Behav Immun Health ; 33: 100678, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37692096

RESUMO

Anti-neuronal autoantibodies can be transplacentally transferred during pregnancy and may cause detrimental effects on fetal development. It is unclear whether autoantibodies against synapsin-I, one of the most abundant synaptic proteins, are associated with developmental abnormalities in humans. We recruited a cohort of 263 pregnant women and detected serum synapsin-I IgG autoantibodies in 13.3% using cell-based assays. Seropositivity was strongly associated with abnormalities of fetal development including structural defects, intrauterine growth retardation, amniotic fluid disorders and neuropsychiatric developmental diseases in previous children (odds ratios of 3-6.5). Autoantibodies reached the fetal circulation and were mainly of IgG1/IgG3 subclasses. They bound to conformational and linear synapsin-I epitopes, five distinct epitopes were identified using peptide microarrays. The findings indicate that synapsin-I autoantibodies may be clinically useful biomarkers or even directly participate in the disease process of neurodevelopmental disorders, thus being potentially amenable to antibody-targeting interventional strategies in the future.

2.
Brain Behav Immun Health ; 29: 100609, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36923695

RESUMO

Objective: To study the prevalence of autoantibodies to glial and neuronal antigens with a focus on glial acidic fibrillary protein (GFAP) in patients with dementia. Methods: Sera of 127 patients with different forms of dementia and sera of 82 age-matched patients with various neurological diseases except for dementia, as well as sera from 15 age-matched healthy controls were analyzed for anti-glial or anti-neuronal IgG using 1) primary murine embryonic hippocampus cell cultures, 2) murine brain sections, 3) immunoblotting on mouse brain homogenates and 4) astrocyte cultures. Sera reacting with astrocytes in hippocampus cell cultures were further analyzed using HEK293 cells transfected with human GFAP. Results: IgG in serum from 45 of 127 (35.5%) patients with dementia but only 8 of 97 (8.2%, p ≤ 0.001) controls bound to either glial or neuronal structures in cultured murine hippocampus cells. In these cultures antibodies to astrocytes were detected in 35 of 127 (27.5%) of the dementia patients, whereas in controls antibodies to astrocytes were detected in 4 sera only (4.1%, p ≤ 0.001). Among the sera exhibiting reactivity to astrocytes, 14 of 35 (40%) showed immunoreaction to HEK293 cells transfected with GFAP in dementia patients, representing 11% of all sera. Within the 4 immunoreactive control sera reacting with astrocytes one reacted with GFAP (1.0% of total immunoreactivity, p = 0.003). Conclusions: Autoantibodies to glial epitopes in general and to GFAP in particular are more frequent in patients with dementia than in age-matched controls without dementia, thus indicating the need for further investigations regarding the potential pathophysiological relevance of these antibodies.

3.
Front Immunol ; 14: 1101087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742338

RESUMO

Maternal autoantibodies can be transmitted diaplacentally, with potentially deleterious effects on neurodevelopment. Synapsin 1 (SYN1) is a neuronal protein that is important for synaptic communication and neuronal plasticity. While monoallelic loss of function (LoF) variants in the SYN1 gene result in X-linked intellectual disability (ID), learning disabilities, epilepsy, behavioral problems, and macrocephaly, the effect of SYN1 autoantibodies on neurodevelopment remains unclear. We recruited a clinical cohort of 208 mothers and their children with neurologic abnormalities and analyzed the role of maternal SYN1 autoantibodies. We identified seropositivity in 9.6% of mothers, and seropositivity was associated with an increased risk for ID and behavioral problems. Furthermore, children more frequently had epilepsy, macrocephaly, and developmental delay, in line with the SYN1 LoF phenotype. Whether SYN1 autoantibodies have a direct pathogenic effect on neurodevelopment or serve as biomarkers requires functional experiments.


Assuntos
Autoanticorpos , Epilepsia , Deficiência Intelectual , Humanos , Neurônios/metabolismo , Fenótipo , Sinapsinas/genética , Sinapsinas/metabolismo
4.
Front Cell Neurosci ; 17: 1077204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794262

RESUMO

Introduction: The antibody repertoire from CSF-derived antibody-secreting cells and memory B-cells in patients with encephalitis contains a considerable number of antibodies that do not target the disease-defining autoantigen such as the GABA or NMDA receptors. This study focuses on the functional relevance of autoantibodies to brain blood vessels in patients with GABAA and NMDA receptor encephalitis. Methods: We tested 149 human monoclonal IgG antibodies from the cerebrospinal fluid of six patients with different forms of autoimmune encephalitis on murine brain sections for reactivity to blood vessels using immunohistochemistry. Positive candidates were tested for reactivity with purified brain blood vessels, effects on transendothelial electrical resistance (TEER), and expression of tight junction proteins as well as gene regulation using human brain microvascular endothelial hCMEC/D3 cells as in vitro blood-brain barrier model. One blood-vessel reactive antibody was infused intrathecally by pump injection in mice to study in vivo binding and effects on tight junction proteins such as Occludin. Target protein identification was addressed using transfected HEK293 cells. Results: Six antibodies reacted with brain blood vessels, three were from the same patient with GABAAR encephalitis, and the other three were from different patients with NMDAR encephalitis. One antibody from an NMDAR encephalitis patient, mAb 011-138, also reacted with cerebellar Purkinje cells. In this case, treatment of hCMEC/D3 cells resulted in decreased TEER, reduced Occludin expression, and mRNA levels. Functional relevance in vivo was confirmed as Occludin downregulation was observed in mAb 011-138-infused animals. Unconventional Myosin-X was identified as a novel autoimmune target for this antibody. Discussion: We conclude that autoantibodies to blood vessels occur in autoimmune encephalitis patients and might contribute to a disruption of the blood-brain barrier thereby suggesting a potential pathophysiological relevance of these antibodies.

5.
Front Cell Neurosci ; 16: 860823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783090

RESUMO

In primary murine hippocampal neurons we investigated the regulation of EAAT3-mediated glutamate transport by the Clostridium botulinum C3 transferase C3bot and a 26mer peptide derived from full length protein. Incubation with either enzyme-competent C3bot or enzyme-deficient C3bot156-181 peptide resulted in the upregulation of glutamate uptake by up to 22% compared to untreated cells. A similar enhancement of glutamate transport was also achieved by the classical phorbol-ester-mediated activation of protein kinase C subtypes. Yet comparable, effects elicited by C3 preparations seemed not to rely on PKCα, γ, ε, or ζ activation. Blocking of tyrosine phosphorylation by tyrosine kinase inhibitors prevented the observed effect mediated by C3bot and C3bot 26mer. By using biochemical and molecular biological assays we could rule out that the observed C3bot and C3bot 26mer-mediated effects solely resulted from enhanced transporter expression or translocation to the neuronal surface but was rather mediated by transporter phosphorylation at tyrosine residues that was found to be significantly enhanced following incubation with either full length protein or the 26mer C3 peptide.

6.
Front Cell Neurosci ; 14: 596072, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240046

RESUMO

The current study investigates the neurotrophic effects of Clostridium botulinum C3 transferase (C3bot) on highly purified, glia-free, GABAergic, and glutamatergic neurons. Incubation with nanomolar concentrations of C3bot promotes dendrite formation as well as dendritic and axonal outgrowth in rat GABAergic neurons. A comparison of C3bot effects on sorted mouse GABAergic and glutamatergic neurons obtained from newly established NexCre;Ai9xVGAT Venus mice revealed a higher sensitivity of GABAergic cells to axonotrophic and dendritic effects of C3bot in terms of process length and branch formation. Protein biochemical analysis of known C3bot binding partners revealed comparable amounts of ß1 integrin in both cell types but a higher expression of vimentin in GABAergic neurons. Accordingly, binding of C3bot to GABAergic neurons was stronger than binding to glutamatergic neurons. A combinatory treatment of glutamatergic neurons with C3bot and vimentin raised the amount of bound C3bot to levels comparable to the ones in GABAergic neurons, thereby confirming the specificity of effects. Overall, different surface vimentin levels between GABAergic and glutamatergic neurons exist that mediate neurotrophic C3bot effects.

7.
Cell ; 183(4): 1058-1069.e19, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058755

RESUMO

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from 10 COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb, CV07-209, neutralized authentic SARS-CoV-2 with an IC50 value of 3.1 ng/mL. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 Å revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2-neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss, and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/metabolismo , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/uso terapêutico , Reações Antígeno-Anticorpo , Betacoronavirus/imunologia , Betacoronavirus/patogenicidade , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cricetinae , Cristalografia por Raios X , Modelos Animais de Doenças , Humanos , Cinética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
bioRxiv ; 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817952

RESUMO

The emergence of SARS-CoV-2 led to pandemic spread of coronavirus disease 2019 (COVID-19), manifesting with respiratory symptoms and multi-organ dysfunction. Detailed characterization of virus-neutralizing antibodies and target epitopes is needed to understand COVID-19 pathophysiology and guide immunization strategies. Among 598 human monoclonal antibodies (mAbs) from ten COVID-19 patients, we identified 40 strongly neutralizing mAbs. The most potent mAb CV07-209 neutralized authentic SARS-CoV-2 with IC50 of 3.1 ng/ml. Crystal structures of two mAbs in complex with the SARS-CoV-2 receptor-binding domain at 2.55 and 2.70 A revealed a direct block of ACE2 attachment. Interestingly, some of the near-germline SARS-CoV-2 neutralizing mAbs reacted with mammalian self-antigens. Prophylactic and therapeutic application of CV07-209 protected hamsters from SARS-CoV-2 infection, weight loss and lung pathology. Our results show that non-self-reactive virus-neutralizing mAbs elicited during SARS-CoV-2 infection are a promising therapeutic strategy.

9.
Klin Monbl Augenheilkd ; 237(2): 128-132, 2020 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-32040975

RESUMO

The development of neuroprotective and regenerative therapies in the central nervous system (CNS) poses a major challenge in clinical and basic research. In contrast to the peripheral nervous system, which has a comparatively high intrinsic regenerative capacity, this characteristic is poorly developed in the adult CNS. In this review, some basic growth mechanisms of CNS neurons will be highlighted, as well as factors that prevent successful regeneration after injury. Primarily in the context of glaucoma, preclinical and clinical studies are presented which can improve the understanding of neurodegenerative processes in the optical system and thus provide the basis for current and future therapeutic strategies.


Assuntos
Sistema Nervoso Central , Neuroproteção , Glaucoma , Humanos , Regeneração Nervosa , Neurônios
10.
Cell Death Dis ; 11(1): 27, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937775

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Cell Death Dis ; 10(11): 864, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727880

RESUMO

Synapsin I is a phosphoprotein that coats the cytoplasmic side of synaptic vesicles and regulates their trafficking within nerve terminals. Autoantibodies against Syn I have been described in sera and cerebrospinal fluids of patients with numerous neurological diseases, including limbic encephalitis and clinically isolated syndrome; however, the effects and fate of autoantibodies in neurons are still unexplored. We found that in vitro exposure of primary hippocampal neurons to patient's autoantibodies to SynI decreased the density of excitatory and inhibitory synapses and impaired both glutamatergic and GABAergic synaptic transmission. These effects were reproduced with a purified SynI antibody and completely absent in SynI knockout neurons. Autoantibodies to SynI are internalized by FcγII/III-mediated endocytosis, interact with endogenous SynI, and promote its sequestration and intracellular aggregation. Neurons exposed to human autoantibodies to SynI display a reduced density of SVs, mimicking the SynI loss-of-function phenotype. Our data indicate that autoantibodies to intracellular antigens such as SynI can reach and inactivate their targets and suggest that an antibody-mediated synaptic dysfunction may contribute to the evolution and progression of autoimmune-mediated neurological diseases positive for SynI autoantibodies.


Assuntos
Autoanticorpos/imunologia , Doenças do Sistema Nervoso/imunologia , Sinapses/imunologia , Sinapsinas/genética , Animais , Autoanticorpos/genética , Citoplasma/genética , Citoplasma/imunologia , Neurônios GABAérgicos/imunologia , Neurônios GABAérgicos/metabolismo , Humanos , Encefalite Límbica/genética , Encefalite Límbica/imunologia , Camundongos , Doenças do Sistema Nervoso/genética , Neurônios , Transporte Proteico/genética , Sinapses/genética , Sinapsinas/imunologia , Transmissão Sináptica/genética , Transmissão Sináptica/imunologia , Vesículas Sinápticas/genética , Vesículas Sinápticas/imunologia
13.
Front Psychiatry ; 10: 401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231257

RESUMO

The discovery that antibodies targeting neuronal antigens can induce severe psychiatric symptoms has been a significant progress in the understanding of psychiatric disorders. Antibodies targeting synapsin I in serum and cerebrospinal fluid (CSF) were first reported in 2015 in a patient with limbic encephalitis. Because of its regulatory function for neurotransmitter release, synapsin I has been suggested to play a role in psychiatric disorders. It is, however, unknown whether or not synapsin antibodies are of clinical significance in patients with psychiatric disorders. In the present study, we aimed to investigate if synapsin I immunoglobulin (Ig)G serum antibody positive patients admitted to acute psychiatric care have a different psychiatric phenotype than synapsin IgG antibody negative patients. A total of 13 anti-synapsin positive patients were matched for age, sex, and psychiatric diagnosis with 39 anti-synapsin negative patients from the same cohort. The groups were compared regarding 11 clinical features frequently seen in anti-neuronal antibody associated disorders. Anti-synapsin positive patients had higher agitation scores as measured with the Positive and Negative Syndrome Scale Excited Component [median (interquartile range) 11 (8) versus 7 (7), p = 0.04] compared to controls. However, the absolute scores were low in both groups, and the difference may not be clinically significant. Other clinical features assessed (e.g. hallucinations, delusions) did not differ between groups. We conclude that synapsin serum IgG antibodies lack syndrome specificity in patients admitted to acute psychiatric inpatient care. However, further studies addressing functional effects of synapsin antibodies are needed to conclude whether or not they have a pathophysiological relevance.

14.
Glia ; 67(4): 703-717, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30485542

RESUMO

Clostridium botulinum C3 transferase (C3bot) ADP-ribosylates rho proteins to change cellular functions in a variety of cell types including astrocytes and neurons. The intermediate filament protein vimentin as well as transmembrane integrins are involved in internalization of C3bot into cells. The exact contribution, however, of these proteins to binding of C3bot to the cell surface and subsequent cellular uptake remains to be unraveled. By comparing primary astrocyte cultures derived from wild-type with Vim-/- mice, we demonstrate that astrocytes lacking vimentin exhibited a delayed ADP-ribosylation of rhoA concurrent with a blunted morphological response. This functional impairment was rescued by the extracellular excess of recombinant vimentin. Binding assays using C3bot harboring a mutated integrin-binding RGD motif (C3bot-G89I) revealed the involvement of integrins in astrocyte binding of C3bot. Axonotrophic effects of C3bot are vimentin dependent and postulate an underlying mechanism entertaining a molecular cross-talk between astrocytes and neurons. We present functional evidence for astrocytic release of vimentin by exosomes using an in vitro scratch wound model. Exosomal vimentin+ particles released from wild-type astrocytes promote the interaction of C3bot with neuronal membranes. This effect vanished when culturing Vim-/- astrocytes. Specificity of these findings was confirmed by recombinant vimentin propagating enhanced binding of C3bot to synaptosomes from rat spinal cord and mouse brain. We hypothesize that vimentin+ exosomes released by reactive astrocytes provide a novel molecular mechanism constituting axonotrophic (neuroprotective) and plasticity augmenting effects of C3bot after spinal cord injury.


Assuntos
ADP Ribose Transferases/farmacologia , Astrócitos/metabolismo , Toxinas Botulínicas/farmacologia , Vesículas Extracelulares/fisiologia , Neurônios/metabolismo , Vimentina/metabolismo , ADP Ribose Transferases/metabolismo , Animais , Astrócitos/ultraestrutura , Toxinas Botulínicas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Vesículas Extracelulares/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ratos , Ratos Endogâmicos Lew , Medula Espinal/citologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Frações Subcelulares/ultraestrutura , Fatores de Tempo , Vimentina/genética
15.
PLoS One ; 13(12): e0208636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30543686

RESUMO

OBJECTIVE: To identify the specific domains of the presynaptic protein synapsin targeted by recently described autoantibodies to synapsin. METHODS: Sera of 20 and CSF of two patients with different psychiatric and neurological disorders previously tested positive for immunoglobulin (Ig)G antibodies to full-length synapsin were screened for IgG against synapsin I domains using HEK293 cells transfected with constructs encoding different domains of rat synapsin Ia. Additionally, IgG subclasses were determined using full-length synapsin Ia. Serum and CSF from one patient were also screened for IgA autoantibodies to synapsin I domains. Sera from nine and CSF from two healthy subjects were analyzed as controls. RESULTS: IgG in serum from 12 of 20 IgG synapsin full-length positive patients, but from none of the healthy controls, bound to synapsin domains. Of these 12 sera, six bound to the A domain, five to the D domain, and one to the B- (and possibly A-), D-, and E-domains of synapsin I. IgG antibodies to the D-domain were also detected in one of the CSF samples. Determination of IgG subclasses detected IgG1 in two sera and one CSF, IgG2 in none of the samples, IgG3 in two sera, and IgG4 in eight sera. One patient known to be positive for IgA antibodies to full-length synapsin had IgA antibodies to the D-domain in serum and CSF. CONCLUSIONS: Anti-synapsin autoantibodies preferentially bind to either the A- or the D-domain of synapsin I.


Assuntos
Autoanticorpos/sangue , Epitopos/imunologia , Imunoglobulina G/sangue , Sinapsinas/imunologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Células HEK293 , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/classificação , Masculino , Transtornos Mentais/líquido cefalorraquidiano , Transtornos Mentais/patologia , Pessoa de Meia-Idade , Doenças Neurodegenerativas/líquido cefalorraquidiano , Doenças Neurodegenerativas/patologia , Domínios Proteicos/imunologia , Sinapsinas/química , Sinapsinas/metabolismo , Adulto Jovem
16.
J Biol Chem ; 292(43): 17668-17680, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28882889

RESUMO

The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg-Gly-Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to ß1-integrin subunit and binding assays in different cell lines, primary neurons, and synaptosomes with C3-RGD mutants. Here, we report that preincubation of cells with the GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin.


Assuntos
ADP Ribose Transferases , Toxinas Botulínicas , Integrina beta1 , Neurônios/metabolismo , Oligopeptídeos , Sinaptossomos/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/farmacocinética , ADP Ribose Transferases/farmacologia , Motivos de Aminoácidos , Animais , Toxinas Botulínicas/química , Toxinas Botulínicas/farmacocinética , Toxinas Botulínicas/farmacologia , Linhagem Celular , Integrina beta1/química , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Vimentina/química , Vimentina/genética , Vimentina/metabolismo
17.
Brain Behav Immun ; 66: 125-134, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28733081

RESUMO

OBJECTIVE: To study the prevalence of autoantibodies to synapsin in patients with psychiatric and neurological disorders and to describe clinical findings in synapsin antibody positive patients. METHODS: Sera of 375 patients with different psychiatric and neurological disorders and sera of 97 healthy controls were screened (dilution 1:320) for anti-synapsin IgG using HEK293 cells transfected with rat synapsin Ia. Positive sera were further analyzed by immunoblots with brain tissue from wild type and synapsin knock out mice and with HEK293 cells transfected with human synapsin Ia and Ib. Binding of synapsin IgG positive sera to primary neurons was studied using murine hippocampal neurons. RESULTS: IgG in serum from 23 (6.1%) of 375 patients, but from none of the 97 healthy controls (p=0.007), bound to rat synapsin Ia transfected cells with a median (range) titer of 1:1000 (1:320-1:100,000). Twelve of the 23 positive sera reacted with a protein of the molecular size of synapsin I in immunoblots of wild type but not of synapsin knock out mouse brain tissue. Out of 19/23 positive sera available for testing, 13 bound to human synapsin Ia and 16 to human synapsin Ib transfected cells. Synapsin IgG positive sera stained fixed and permeabilized murine hippocampal neurons. Synapsin IgG positive patients had various psychiatric and neurological disorders. Tumors were documented in 2 patients (melanoma, small cell lung carcinoma); concomitant anti-neuronal or other autoantibodies were present in 8 patients. CONCLUSIONS: Autoantibodies to human synapsin Ia and Ib are detectable in a proportion of sera from patients with different psychiatric and neurological disorders, warranting further investigation into the potential pathophysiological relevance of these antibodies.


Assuntos
Autoanticorpos/sangue , Transtornos Mentais/imunologia , Doenças do Sistema Nervoso/imunologia , Sinapsinas/sangue , Sinapsinas/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Feminino , Células HEK293 , Hipocampo/metabolismo , Humanos , Imunoglobulina G/sangue , Masculino , Transtornos Mentais/sangue , Transtornos Mentais/epidemiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/epidemiologia , Neurônios/metabolismo , Prevalência , Ratos , Adulto Jovem
18.
J Neurochem ; 139(2): 234-244, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27419376

RESUMO

The type III intermediate filament protein vimentin was recently identified to mediate binding and uptake of Clostridium botulinum C3 exoenzyme (C3bot) in two cell lines. Here, we used primary neuronal cultures from vimentin knockout (Vim-/- ) mice to study the impact of vimentin on axonal growth and internalization of C3bot. In contrast to wild type, vimentin knockout neurons were insensitive to C3bot. Application of extracellular vimentin to Vim-/- neurons completely restored the growth-promoting effects of C3bot. In line with this uptake of C3bot into Vim-/- neurons was strongly decreased resulting in reduced ADP-ribosylation of RhoA and B as detected by an antibody recognizing selectively ADP-ribosylated RhoA/B. Again, uptake of C3bot into Vim-/- neurons was rescued by addition of extracellular vimentin. In addition, in purified embryonic stem cell-derived motor neurons that are devoid of glial cells C3bot elicited axonotrophic effects confining neuronal vimentin as a binding partner. Primary neuronal cultures from vimentin knockout (KO) mice were used to study the impact of vimentin on axonal growth and internalization of C3bot. In contrast to wild type, vimentin knockout neurons were insensitive to the axonotrophic effects of C3bot. Application of extracellular vimentin (recombinant vimentin) to vimentin KO neurons completely restored the growth-promoting effects of C3bot. In line with this uptake of C3bot into vimentin KO neurons was strongly decreased resulting in reduced ADP-ribosylation of RhoA and B as detected by an antibody recognizing selectively ADP-ribosylated RhoA/B.


Assuntos
ADP Ribose Transferases/farmacologia , Axônios/efeitos dos fármacos , Toxinas Botulínicas/farmacologia , Vimentina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Animais , Linhagem Celular , Genótipo , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Células-Tronco Neurais/metabolismo , Cultura Primária de Células , Vimentina/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP , Proteína rhoB de Ligação ao GTP/metabolismo
19.
Neurol Neuroimmunol Neuroinflamm ; 2(6): e169, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26587554

RESUMO

OBJECTIVE: To report on the identification of intrathecally synthesized immunoglobulin A (IgA) and immunoglobulin G (IgG) antibodies to synapsin, a synaptic vesicle-associated protein, in a patient with limbic encephalitis. METHODS: Methods included clinical characterization, indirect immunofluorescence, immunoprecipitation, mass spectrometry, immunoblots of wild-type and synapsin I/II/III knockout mice, and cell-based assays with synapsin Ia, Ib, IIa, and IIb plasmids. RESULTS: A 69-year-old man presented with confusion, disorientation, seizures, and left hippocampal hyperintensities on MRI. CSF examinations revealed an intrathecal IgA and IgG synthesis. Except for IgG antibodies to voltage-gated potassium channels in CSF, screening for known neuronal autoantibodies in serum and CSF was negative. However, indirect immunofluorescence using the patient's CSF showed binding of IgA to mouse hippocampus, amygdala, and cerebellum. Immunoprecipitation with CSF IgA followed by mass spectrometry identified synapsin as autoantigenic target. Knockout tissues and cell-based assays confirmed that IgA and IgG in the patient's CSF and serum reacted with synapsin Ia, Ib, and IIa. Calculation of antibody indices proved intrathecal synthesis of anti-synapsin IgA and IgG. The patient responded clinically to immunotherapy but developed left hippocampal atrophy. CSF IgA or IgG of the patient did not bind to live, unfixed, and nonpermeabilized mouse hippocampal neurons, compatible with synapsin being an intracellular antigen. CONCLUSIONS: This report identifies isoforms of the synaptic vesicle-associated protein synapsin as targets of intrathecally produced IgA and IgG antibodies in a patient with limbic encephalitis. Future studies should clarify the prevalence and pathogenic relevance of anti-synapsin antibodies in limbic encephalitis.

20.
Neurochem Int ; 90: 232-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26417907

RESUMO

Previous studies revealed a peripheral nerve regeneration (PNR)(1) promoting activity of Clostridium botulinum C3(2) exoenzyme or a 26(mer) C-terminal peptide fragment covering amino acids 156-181 (C3(156-181)),(3) when delivered as one-time injection at the lesion site. The current study was performed to 1) investigate if prolonged availability of C3 and C3(156-181) at the lesion site can further enhance PNR in vivo and to 2) elucidate effects of C3 and C3(156-181) on Schwann cells (SCs)(4)in vitro. For in vivo studies, 10 mm adult rat sciatic nerve gaps were reconstructed with the epineurial pouch technique or autologous nerve grafts. Epineurial pouches were filled with a hydrogel containing i) vehicle, ii) 40 µM C3 or iii) 40 µM C3(156-181). Sensory and motor functional recovery was monitored over 12 weeks and the outcome of PNR further analyzed by nerve morphometry. In vitro, we compared gene expression profiles (microarray analysis) and neurotrophic factor expression (western blot analysis) of untreated rat neonatal SCs with those treated with C3 or C3(156-181) for 72 h. Effects on neurotrophic factor expression levels were proven in adult human SCs. Unexpectedly, prolonged delivery of C3 and C3(156-181) at the lesion site did not increase the outcome of PNR. Regarding the potential mechanism underlying their previously detected PNR promoting action, however, 6 genes were found to be commonly altered in SCs upon treatment with C3 or C3(156-181). We demonstrate significant down-regulation of genes involved in glutamate uptake (Eaac1,(5)Grin2a(6)) and changes in neurotrophic factor expression (increase of FGF-2(7) and decrease of NGF(8)). Our microarray-based expression profiling revealed novel C3-regulated genes in SCs possibly involved in the axonotrophic (regeneration promoting) effects of C3 and C3(156-181). Detection of altered neurotrophic factor expression by C3 or C3(156-181) treated primary neonatal rat SCs and primary adult human SCs supports this hypothesis.


Assuntos
ADP Ribose Transferases/farmacologia , Toxinas Botulínicas/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Técnicas de Cocultura , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Camundongos , Fator de Crescimento Neural/metabolismo , Regeneração Nervosa/fisiologia , Ratos , Células de Schwann/citologia , Nervo Isquiático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA