Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 77(13): 4412-21, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602377

RESUMO

The eastern Mediterranean Sea represents an ultraoligotrophic environment where soluble phosphate limits the growth of bacterioplankton. Correspondingly, genes coding for high-affinity phosphate uptake systems and for organophosphonate utilization are highly prevalent in the plankton metagenome. Chemotaxis toward inorganic phosphate constitutes an alternative strategy to cope with phosphate limitation, but so far has only been demonstrated for two bacterial pathogens and an archaeon, and not in any free-living planktonic bacterium. In the present study, bacteria affiliated with the genus Thalassospira were found to constitute a regular, low-abundance member of the bacterioplankton that can be detected throughout the water column of the eastern Mediterranean Sea. A representative (strain EM) was isolated in pure culture and exhibited a strong positive chemotaxis toward inorganic phosphate that was induced exclusively in phosphate-starved cultures. Phosphate-depleted cells were 2-fold larger than in exponentially growing cultures, and 43% of the cells retained their motility even during prolonged starvation over 10 days. In addition, Thalassospira sp. strain EM was chemotactically attracted by complex substrates (yeast extract and peptone), amino acids, and 2-aminoethylphosphonate but not by sugar monomers. Similarly to the isolate from the eastern Mediterranean, chemotaxis toward phosphate was observed in starved cultures of the other two available isolates of the genus, T. lucentensis DSM 14000T and T. profundimaris WP0211T. Although Thalassospira sp. represents only up to 1.2% of the total bacterioplankton community in the water column of the eastern Mediterranean Sea, its chemotactic behavior potentially leads to an acceleration of nutrient cycling and may also explain the persistence of marine copiotrophs in this extremely nutrient-limited environment.


Assuntos
Quimiotaxia , Fosfatos/metabolismo , Rhodospirillaceae/fisiologia , Água do Mar/microbiologia , Aminoácidos/metabolismo , Metabolismo dos Carboidratos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Mar Mediterrâneo , Dados de Sequência Molecular , Peptonas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Rhodospirillaceae/isolamento & purificação , Rhodospirillaceae/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA