Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569446

RESUMO

This study investigated the protective effect of glutathione (GSH), an antioxidant drug, against doxorubicin (DOX)-induced cardiotoxicity. Human cardiac progenitor cells (hCPCs) treated with DOX (250 to 500 nM) showed increased viability and reduced ROS generation and apoptosis with GSH treatment (0.1 to 1 mM) for 24 h. In contrast to the 500 nM DOX group, pERK levels were restored in the group co-treated with GSH and suppression of ERK signaling improved hCPCs' survival. Similarly to the previous results, the reduced potency of hCPCs in the 100 nM DOX group, which did not affect cell viability, was ameliorated by co-treatment with GSH (0.1 to 1 mM). Furthermore, GSH was protected against DOX-induced cardiotoxicity in the in vivo model (DOX 20 mg/kg, GSH 100 mg/kg). These results suggest that GSH is a potential therapeutic strategy for DOX-induced cardiotoxicity, which performs its function via ROS reduction and pERK signal regulation.

3.
Cells ; 12(15)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37566085

RESUMO

Endothelial progenitor cell (EPC)-based stem cell therapy is a promising therapeutic strategy for vascular diseases. However, continuous in vitro expansion for clinical studies induces the loss of EPC functionality due to aging. In this study, we investigated the effects of StemRegenin-1 (SR-1), an antagonist of aryl hydrocarbon receptor (AhR), on replicative senescence in EPCs. We found that SR-1 maintained the expression of EPC surface markers, including stem cell markers, such as CD34, c-Kit, and CXCR4. Moreover, SR-1 long-term-treated EPCs preserved their characteristics. Subsequently, we demonstrated that SR-1 showed that aging phenotypes were reduced through senescence-associated phenotypes, such as ß-galactosidase activity, SMP30, p21, p53, and senescence-associated secretory phenotype (SASP). SR-1 treatment also increased the proliferation, migration, and tube-forming capacity of senescent EPCs. SR-1 inhibited the AhR-mediated cytochrome P450 (CYP)1A1 expression, reactive-oxygen species (ROS) production, and DNA damage under oxidative stress conditions in EPCs. Furthermore, as a result of CYP1A1-induced ROS inhibition, it was found that accumulated intracellular ROS were decreased in senescent EPCs. Finally, an in vivo Matrigel plug assay demonstrated drastically enhanced blood vessel formation via SR-1-treated EPCs. In summary, our results suggest that SR-1 contributes to the protection of EPCs against cellular senescence.


Assuntos
Células Progenitoras Endoteliais , Espécies Reativas de Oxigênio/metabolismo , Células Progenitoras Endoteliais/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Citocromo P-450 CYP1A1/metabolismo
6.
Transl Cancer Res ; 11(2): 316-326, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35281415

RESUMO

Background: To identify immunotherapy biomarkers, we examined granzyme B levels in peripheral blood PD-1+ CD8+ T cells and their relationship with treatment outcomes in patients with non-small cell lung cancer (NSCLC). Methods: To evaluate the association of granzyme B with response to immunotherapy, we tested blood samples obtained from 16 patients with stage IIIC to IV NSCLC receiving immune-checkpoint inhibitor treatment. We used flow cytometry to measure the change in the percentage of PD1+ CD8+ T cells expressing granzyme B before (t0) and after (t1) immunotherapy, and we evaluated for an association with tumor response to therapy, progression-free survival (PFS) and overall survival (OS). Additionally, we measured immune markers correlated with immunotherapy response by enzyme-linked immunosorbent assay. Results: We found that the sequential change of granzyme B+ T cells after immunotherapy (t1/t0) significantly predicted durable clinical benefit (DCB) compared to no clinical benefit (NCB) (P=0.048), and prolonged PFS (P=0.025). Patients who demonstrated a PD-L1 tumor proportion score (TPS) >50% showed NCB if patients had low granzyme B t1/t0 levels (<0.805). Additionally, all patients with 1% PD-L1 TPS (or higher) and high granzyme B t1/t0 (≥0.805) showed DCB. Therefore, granzyme B t1/t0 may be an adjunctive marker with available PD-L1 TPS. Conclusions: Our findings revealed that sequential change in granzyme B might be utilized as a predictive biomarker of immune checkpoint inhibitor monotherapy.

7.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35055132

RESUMO

Anterior gradient protein 2 homolog (AGR2), an endoplasmic reticulum protein, is secreted in the tumor microenvironment. AGR2 is a member of the disulfide isomerase family, is highly expressed in multiple cancers, and promotes cancer metastasis. In this study, we found that etravirine, which is a non-nucleoside reverse transcriptase inhibitor, could induce AGR2 degradation via autophagy. Moreover, etravirine diminished proliferation, migration, and invasion in vitro. Moreover, in an orthotopic xenograft mouse model, the combination of etravirine and paclitaxel significantly suppressed cancer progression and metastasis. This drug may be a promising therapeutic agent for the treatment of ovarian cancer.


Assuntos
Mucoproteínas/metabolismo , Nitrilas/administração & dosagem , Proteínas Oncogênicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/administração & dosagem , Pirimidinas/administração & dosagem , Inibidores da Transcriptase Reversa/administração & dosagem , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mucoproteínas/genética , Metástase Neoplásica , Nitrilas/farmacologia , Proteínas Oncogênicas/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Proteólise , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Exp Mol Med ; 53(9): 1423-1436, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34584195

RESUMO

Stem cell-based therapies with clinical applications require millions of cells. Therefore, repeated subculture is essential for cellular expansion, which is often complicated by replicative senescence. Cellular senescence contributes to reduced stem cell regenerative potential as it inhibits stem cell proliferation and differentiation as well as the activation of the senescence-associated secretory phenotype (SASP). In this study, we employed MHY-1685, a novel mammalian target of rapamycin (mTOR) inhibitor, and examined its long-term priming effect on the activities of senile human cardiac stem cells (hCSCs) and the functional benefits of primed hCSCs after transplantation. In vitro experiments showed that the MHY-1685‒primed hCSCs exhibited higher viability in response to oxidative stress and an enhanced proliferation potential compared to that of the unprimed senile hCSCs. Interestingly, priming MHY-1685 enhanced the expression of stemness-related markers in senile hCSCs and provided the differentiation potential of hCSCs into vascular lineages. In vivo experiment with echocardiography showed that transplantation of MHY-1685‒primed hCSCs improved cardiac function than that of the unprimed senile hCSCs at 4 weeks post-MI. In addition, hearts transplanted with MHY-1685-primed hCSCs exhibited significantly lower cardiac fibrosis and higher capillary density than that of the unprimed senile hCSCs. In confocal fluorescence imaging, MHY-1685‒primed hCSCs survived for longer durations than that of the unprimed senile hCSCs and had a higher potential to differentiate into endothelial cells (ECs) within the infarcted hearts. These findings suggest that MHY-1685 can rejuvenate senile hCSCs by modulating autophagy and that as a senescence inhibitor, MHY-1685 can provide opportunities to improve hCSC-based myocardial regeneration.


Assuntos
Autofagia , Diferenciação Celular , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/metabolismo , Regeneração , Células-Tronco/citologia , Células-Tronco/metabolismo , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Fibrose , Humanos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transplante de Células-Tronco , Serina-Treonina Quinases TOR/metabolismo
9.
Biosens Bioelectron ; 194: 113567, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34481239

RESUMO

There is a growing interest in electronic nose-based diagnostic systems that are fast and portable. However, existing technologies are suitable only for operation in the laboratory, making them difficult to apply in a rapid, non-face-to-face, and field-suitable manner. Here, we demonstrate a DNA-derived phage nose (D2pNose) as a portable respiratory disease diagnosis system requiring no pretreatment. D2pNose was produced based on phage colour films implanted with DNA sequences from mammalian olfactory receptor cells, and as a result, it possesses the comprehensive reactivity of these cells. The manipulated surface chemistry of the genetically engineered phages was verified through a correlation analysis between the calculated and the experimentally measured reactivity. Breaths from 31 healthy subjects and 31 lung cancer patients were collected and exposed to D2pNose without pretreatment. With the help of deep learning and neural pattern separation, D2pNose has achieved a diagnostic success rate of over 75% and a classification success rate of over 86% for lung cancer based on raw human breath. Based on these results, D2pNose can be expected to be directly applicable to other respiratory diseases.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Neoplasias Pulmonares , Bacteriófagos/genética , DNA , Humanos , Neoplasias Pulmonares/diagnóstico , Aprendizado de Máquina
10.
Korean J Physiol Pharmacol ; 25(5): 459-466, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448463

RESUMO

Cardiovascular disease (CVD) and its complications are the leading cause of morbidity and mortality in the world. Because of the side effects and incomplete recovery from current therapy, stem cell therapy emerges as a potential therapy for CVD treatment, and endothelial progenitor cell (EPC) is one of the key stem cells used for therapeutic applications. The effect of this therapy required the expansion of EPC function. To enhance the EPC activation, proliferation, and angiogenesis using dronedarone hydrochloride (DH) is the purpose of this study. DH received approval for atrial fibrillation treatment and its cardiovascular protective effects were already reported. In this study, DH significantly increased EPC proliferation, tube formation, migration, and maintained EPCs surface marker expression. In addition, DH treatment up-regulated the phosphorylation of AKT and reduced the reactive oxygen species production. In summary, the cell priming by DH considerably improved the functional activity of EPCs, and the use of which might be a novel strategy for CVD treatment.

11.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946516

RESUMO

Endothelial progenitor cells (EPCs) are specialized cells in circulating blood, well known for their ability to form new vascular structures. Aging and various ailments such as diabetes, atherosclerosis and cardiovascular disease make EPCs vulnerable to decreasing in number, which affects their migration, proliferation and angiogenesis. Myocardial ischemia is also linked to a reduced number of EPCs and their endothelial functional role, which hinders proper blood circulation to the myocardium. The current study shows that an aminopyrimidine derivative compound (CHIR99021) induces the inhibition of GSK-3ß in cultured late EPCs. GSK-3ß inhibition subsequently inhibits mTOR by blocking the phosphorylation of TSC2 and lysosomal localization of mTOR. Furthermore, suppression of GSK-3ß activity considerably increased lysosomal activation and autophagy. The activation of lysosomes and autophagy by GSK-3ß inhibition not only prevented replicative senescence of the late EPCs but also directed their migration, proliferation and angiogenesis. To conclude, our results demonstrate that lysosome activation and autophagy play a crucial role in blocking the replicative senescence of EPCs and in increasing their endothelial function. Thus, the findings provide an insight towards the treatment of ischemia-associated cardiovascular diseases based on the role of late EPCs.


Assuntos
Senescência Celular/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Autofagia/efeitos dos fármacos , Células Cultivadas , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Serina-Treonina Quinases TOR/metabolismo
12.
Exp Mol Med ; 52(4): 615-628, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32273566

RESUMO

The mammalian target of rapamycin (mTOR) signaling pathway efficiently regulates the energy state of cells and maintains tissue homeostasis. Dysregulation of the mTOR pathway has been implicated in several human diseases. Rapamycin is a specific inhibitor of mTOR and pharmacological inhibition of mTOR with rapamycin promote cardiac cell generation from the differentiation of mouse and human embryonic stem cells. These studies strongly implicate a role of sustained mTOR activity in the differentiating functions of embryonic stem cells; however, they do not directly address the required effect for sustained mTOR activity in human cardiac progenitor cells. In the present study, we evaluated the effect of mTOR inhibition by rapamycin on the cellular function of human cardiac progenitor cells and discovered that treatment with rapamycin markedly attenuated replicative cell senescence in human cardiac progenitor cells (hCPCs) and promoted their cellular functions. Furthermore, rapamycin not only inhibited mTOR signaling but also influenced signaling pathways, including STAT3 and PIM1, in hCPCs. Therefore, these data reveal a crucial function for rapamycin in senescent hCPCs and provide clinical strategies based on chronic mTOR activity.


Assuntos
Senescência Celular/efeitos dos fármacos , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Humanos , Sirolimo/farmacologia , Células-Tronco/metabolismo
13.
Tissue Eng Regen Med ; 17(3): 323-333, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227286

RESUMO

BACKGROUND: Despite promising advances in stem cell-based therapy, the treatment of ischemic cardiovascular diseases remains a big challenge due to both the insufficient in vivo viability of transplanted cells and poor angiogenic potential of stem cells. The goal of this study was to develop therapeutic human cardiac progenitor cells (hCPCs) for ischemic cardiovascular diseases with a novel M13 peptide carrier. METHOD: In this study, an engineered M13 peptide carrier was successfully generated using a QuikChange Kit. The cellular function of M13 peptide carrier-treated hCPCs was assessed using a tube formation assay and scratch wound healing assay. The in vivo engraftment and cell survival bioactivities of transplanted cells were demonstrated by immunohistochemistry after hCPC transplantation into a myocardial infarction animal model. RESULTS: The engineered M13RGD+SDKP peptide carrier, which expressed RGD peptide on PIII site and SDKP peptide on PVIII site, did not affect morphologic change and proliferation ability in hCPCs. In contrast, hCPCs treated with M13RGD+SDKP showed enhanced angiogenic capacity, including tube formation and migration capacity. Moreover, transplanted hCPCs with M13RGD+SDKP were engrafted into the ischemic region and promoted in vivo cell survival. CONCLUSION: Our present data provides a promising protocol for CPC-based cell therapy via short-term cell priming of hCPCs with engineered M13RGD+SDKP before cell transplantation for treatment of cardiovascular disease.


Assuntos
Indutores da Angiogênese/farmacologia , Infarto do Miocárdio/terapia , Peptídeos/metabolismo , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Animais , Bacteriófago M13/genética , Doenças Cardiovasculares , Sobrevivência Celular , Células Endoteliais , Engenharia Genética , Humanos , Masculino , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/transplante , Peptídeos/farmacologia , Cicatrização
14.
Mar Drugs ; 17(7)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277207

RESUMO

The purpose of the present study is to improve the endothelial progenitor cells (EPC) activation, proliferation, and angiogenesis using enzyme-aided extraction of fucoidan by amyloglucosidase (EAEF-AMG). Enzyme-aided extraction of fucoidan by AMG (EAEF-AMG) significantly increased EPC proliferation by reducing the reactive oxygen species (ROS) and decreasing apoptosis. Notably, EAEF-AMG treated EPCs repressed the colocalization of TSC2/LAMP1 and promoted perinuclear localization of mTOR/LAMP1 and mTOR/Rheb. Moreover, EAEF-AMG enhanced EPC functionalities, including tube formation, cell migration, and wound healing via regulation of AKT/Rheb signaling. Our data provided cell priming protocols to enhance therapeutic applications of EPCs using bioactive compounds for the treatment of CVD.


Assuntos
Células Progenitoras Endoteliais/efeitos dos fármacos , Glucana 1,4-alfa-Glucosidase/metabolismo , Polissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Cicatrização/efeitos dos fármacos
15.
Biochem Biophys Res Commun ; 515(4): 600-606, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31178140

RESUMO

Colorectal cancer is one of the leading causes of cancer-related deaths. Due to relapse after current therapy regimens, cancer stem cells (CSCs) are being studied to target this small tumor-initiating population. Anterior gradient 2 (AGR2), a disulfide isomerase protein, is a well-known pro-oncogenic/metastatic oncogene overexpressed in various tumor tissues, including colon cancer. We found that AGR2 was a novel stem cell marker that was regulated by the canonical Wnt/ß-catenin pathway in colon CSCs. AGR2 was highly co-expressed with surface stem cell markers in spheroidal culture. Silencing of AGR2 resulted in decreased sphere-forming ability and down-regulated expression of stem cell markers, whereas the opposite effects were seen with AGR2 overexpression. Moreover, patients with high ß-catenin and AGR2 expression showed lower overall survival than those with low expression. In conclusion, our study describes a novel role for AGR2 as a stem cell marker that is highly regulated by canonical Wnt/ß-catenin signaling in colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Mucoproteínas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Oncogênicas/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Inativação Gênica , Células HCT116 , Células HEK293 , Humanos , Metástase Neoplásica , Transdução de Sinais , Esferoides Celulares , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
16.
Biochem Biophys Res Commun ; 516(1): 149-156, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31202462

RESUMO

Anterior gradient protein 2 homolog (AGR2) belongs to the disulfide isomerase family of endoplasmic reticulum proteins. Itis overexpressed in several types of solid tumors, including tumors of the prostate, lung, and pancreas. However, the role of AGR2 in breast cancer and the regulatory mechanisms underlying AGR2 protein expressionare not fullyunderstood. We demonstrated that AGR2 levels are increased under hypoxic conditions and in breast cancer tumors. Mechanistically, Twist1 binds to, and activates the AGR2 promoter via an E-box sequence. Under hypoxic conditions, the increased expression of ARG2 is attenuated when Twist1 levels are reduced by shRNA. Conversely, Twist1 overexpression fully reverses decreased AGR2 levels upon HIF-1α knockdown. Notably, AGR2 is required for Twist1-induced proliferation, migration, and invasion of breast cancer cells. Collectively, these findings extend our understanding of AGR2 regulation in breast cancer and may contribute to development of Twist1-AGR2 targeting therapeutics for breast cancer.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Mucoproteínas/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Proteína 1 Relacionada a Twist/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas
17.
Mar Drugs ; 17(6)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234277

RESUMO

Cardiac progenitor cells (CPCs) are resident stem cells present in a small portion of ischemic hearts and function in repairing the damaged heart tissue. Intense oxidative stress impairs cell metabolism thereby decreasing cell viability. Protecting CPCs from undergoing cellular apoptosis during oxidative stress is crucial in optimizing CPC-based therapy. Histochrome (sodium salt of echinochrome A-a common sea urchin pigment) is an antioxidant drug that has been clinically used as a pharmacologic agent for ischemia/reperfusion injury in Russia. However, the mechanistic effect of histochrome on CPCs has never been reported. We investigated the protective effect of histochrome pretreatment on human CPCs (hCPCs) against hydrogen peroxide (H2O2)-induced oxidative stress. Annexin V/7-aminoactinomycin D (7-AAD) assay revealed that histochrome-treated CPCs showed significant protective effects against H2O2-induced cell death. The anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and Bcl-xL were significantly upregulated, whereas the pro-apoptotic proteins BCL2-associated X (Bax), H2O2-induced cleaved caspase-3, and the DNA damage marker, phosphorylated histone (γH2A.X) foci, were significantly downregulated upon histochrome treatment of hCPCs in vitro. Further, prolonged incubation with histochrome alleviated the replicative cellular senescence of hCPCs. In conclusion, we report the protective effect of histochrome against oxidative stress and present the use of a potent and bio-safe cell priming agent as a potential therapeutic strategy in patient-derived hCPCs to treat heart disease.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Naftoquinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/induzido quimicamente , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Federação Russa , Proteína X Associada a bcl-2/metabolismo
18.
Stem Cells Int ; 2018: 7453161, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510587

RESUMO

Cross talks between the renin-angiotensin system (RAS), sympathetic nervous system, and vascular homeostasis are tightly coordinated in hypertension. Angiotensin II (Ang II), a key factor in RAS, when abnormally activated, affects the number and bioactivity of circulating human endothelial progenitor cells (hEPCs) in hypertensive patients. In this study, we investigated how the augmentation of Ang II regulates adrenergic receptor-mediated signaling and angiogenic bioactivities of hEPCs. Interestingly, the short-term treatment of hEPCs with Ang II drastically attenuated the expression of beta-2 adrenergic receptor (ADRB2), but did not alter the expression of beta-1 adrenergic receptor (ADRB1) and Ang II type 1 receptor (AT1R). EPC functional assay clearly demonstrated that the treatment with ADRB2 agonists significantly increased EPC bioactivities including cell proliferation, migration, and tube formation abilities. However, EPC bioactivities were decreased dramatically when treated with Ang II. Importantly, the attenuation of EPC bioactivities by Ang II was restored by treatment with an AT1R antagonist (telmisartan; TERT). We found that AT1R binds to ADRB2 in physiological conditions, but this binding is significantly decreased in the presence of Ang II. Furthermore, TERT, an Ang II-AT1R interaction blocker, restored the interaction between AT1R and ADRB2, suggesting that Ang II might induce the dysfunction of EPCs via downregulation of ADRB2, and an AT1R blocker could prevent Ang II-mediated ADRB2 depletion in EPCs. Taken together, our report provides novel insights into potential therapeutic approaches for hypertension-related cardiovascular diseases.

19.
J Control Release ; 250: 27-35, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28167287

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein-9 nuclease (Cas9) can be used for the specific disruption of a target gene to permanently suppress the expression of the protein encoded by the target gene. Efficient delivery of the system to an intracellular target site should be achieved to utilize the tremendous potential of the genome-editing tool in biomedical applications such as the knock-out of disease-related genes and the correction of defect genes. Here, we devise polymeric CRISPR/Cas9 system based on poly-ribonucleoprotein (RNP) nanoparticles consisting of polymeric sgRNA, siRNA, and Cas9 endonuclease in order to improve the delivery efficiency. When delivered by cationic lipids, the RNP nanoparticles built with chimeric poly-sgRNA/siRNA sequences generate multiple sgRNA-Cas9 RNP complexes upon the Dicer-mediated digestion of the siRNA parts, leading to more efficient disruption of the target gene in cells and animal models, compared with the monomeric sgRNA-Cas9 RNP complex.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/química , Nanopartículas/química , RNA Guia de Cinetoplastídeos/química , RNA Interferente Pequeno/química , Ribonucleoproteínas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Marcação de Genes , Células HeLa , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Tamanho da Partícula , RNA Interferente Pequeno/administração & dosagem , Ribonuclease III/química , Ribonucleoproteínas/toxicidade
20.
J Control Release ; 243: 121-131, 2016 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-27746274

RESUMO

Nanoparticle delivery systems have been extensively investigated for targeted delivery of anticancer drugs over the past decades. However, it is still a great challenge to overcome the drawbacks of conventional nanoparticle systems such as liposomes and micelles. Various novel nanomaterials consist of natural polymers are proposed to enhance the therapeutic efficacy of anticancer drugs. Among them, deoxyribonucleic acid (DNA) has received much attention as an emerging material for preparation of self-assembled nanostructures with precise control of size and shape for tailored uses. In this study, self-assembled mirror DNA tetrahedron nanostructures is developed for tumor-specific delivery of anticancer drugs. l-DNA, a mirror form of natural d-DNA, is utilized for resolving a poor serum stability of natural d-DNA. The mirror DNA nanostructures show identical thermodynamic properties to that of natural d-DNA, while possessing far enhanced serum stability. This unique characteristic results in a significant effect on the pharmacokinetics and biodistribution of DNA nanostructures. It is demonstrated that the mirror DNA nanostructures can deliver anticancer drugs selectively to tumors with enhanced cellular and tissue penetration. Furthermore, the mirror DNA nanostructures show greater anticancer effects as compared to that of conventional PEGylated liposomes. Our new approach provides an alternative strategy for tumor-specific delivery of anticancer drugs and highlights the promising potential of the mirror DNA nanostructures as a novel drug delivery platform.


Assuntos
Antineoplásicos/administração & dosagem , DNA/química , Sistemas de Liberação de Medicamentos , Nanoestruturas , Animais , Antineoplásicos/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Feminino , Lipossomos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Polietilenoglicóis/química , Termodinâmica , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA