Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Shock ; 60(3): 373-378, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37523617

RESUMO

ABSTRACT: Objective/Introduction : Sequential vital-sign information and trends in vital signs are useful for predicting changes in patient state. This study aims to predict latent shock by observing sequential changes in patient vital signs. Methods : The dataset for this retrospective study contained a total of 93,194 emergency department (ED) visits from January 1, 2016, and December 31, 2020, and Medical Information Mart for Intensive Care (MIMIC)-IV-ED data. We further divided the data into training and validation datasets by random sampling without replacement at a 7:3 ratio. We carried out external validation with MIMIC-IV-ED. Our prediction model included logistic regression (LR), random forest (RF) classifier, a multilayer perceptron (MLP), and a recurrent neural network (RNN). To analyze the model performance, we used area under the receiver operating characteristic curve (AUROC). Results : Data of 89,250 visits of patients who met prespecified criteria were used to develop a latent-shock prediction model. Data of 142,250 patient visits from MIMIC-IV-ED satisfying the same inclusion criteria were used for external validation of the prediction model. The AUROC values of prediction for latent shock were 0.822, 0.841, 0.852, and 0.830 with RNN, MLP, RF, and LR methods, respectively, at 3 h before latent shock. This is higher than the shock index or adjusted shock index. Conclusion : We developed a latent shock prediction model based on 24 h of vital-sign sequence that changed with time and predicted the results by individual.


Assuntos
Choque , Humanos , Estudos Retrospectivos , Choque/diagnóstico , Serviço Hospitalar de Emergência , Sinais Vitais , Curva ROC
3.
Sci Rep ; 12(1): 12454, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864281

RESUMO

The study aims to measure the effectiveness of an AI-based traumatic intracranial hemorrhage prediction model in the decisions of emergency physicians regarding ordering head computed tomography (CT) scans. We developed a deep-learning model for predicting traumatic intracranial hemorrhages (DEEPTICH) using a national trauma registry with 1.8 million cases. For simulation, 24 cases were selected from previous emergency department cases. For each case, physicians made decisions on ordering a head CT twice: initially without the DEEPTICH assistance, and subsequently with the DEEPTICH assistance. Of the 528 responses from 22 participants, 201 initial decisions were different from the DEEPTICH recommendations. Of these 201 initial decisions, 94 were changed after DEEPTICH assistance (46.8%). For the cases in which CT was initially not ordered, 71.4% of the decisions were changed (p < 0.001), and for the cases in which CT was initially ordered, 37.2% (p < 0.001) of the decisions were changed after DEEPTICH assistance. When using DEEPTICH, 46 (11.6%) unnecessary CTs were avoided (p < 0.001) and 10 (11.4%) traumatic intracranial hemorrhages (ICHs) that would have been otherwise missed were found (p = 0.039). We found that emergency physicians were likely to accept AI based on how they perceived its safety.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Craniocerebrais , Aprendizado Profundo , Hemorragia Intracraniana Traumática , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Criança , Serviço Hospitalar de Emergência , Humanos , Tomografia Computadorizada por Raios X/métodos
5.
JMIR Med Inform ; 9(7): e23401, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34309567

RESUMO

BACKGROUND: Delirium frequently occurs among patients admitted to the intensive care unit (ICU). There is limited evidence to support interventions to treat or resolve delirium in patients who have already developed delirium. Therefore, the early recognition and prevention of delirium are important in the management of critically ill patients. OBJECTIVE: This study aims to develop and validate a delirium prediction model within 24 hours of admission to the ICU using electronic health record data. The algorithm was named the Prediction of ICU Delirium (PRIDE). METHODS: This is a retrospective cohort study performed at a tertiary referral hospital with 120 ICU beds. We only included patients who were 18 years or older at the time of admission and who stayed in the medical or surgical ICU. Patients were excluded if they lacked a Confusion Assessment Method for the ICU record from the day of ICU admission or if they had a positive Confusion Assessment Method for the ICU record at the time of ICU admission. The algorithm to predict delirium was developed using patient data from the first 2 years of the study period and validated using patient data from the last 6 months. Random forest (RF), Extreme Gradient Boosting (XGBoost), deep neural network (DNN), and logistic regression (LR) were used. The algorithms were externally validated using MIMIC-III data, and the algorithm with the largest area under the receiver operating characteristics (AUROC) curve in the external data set was named the PRIDE algorithm. RESULTS: A total of 37,543 cases were collected. After patient exclusion, 12,409 remained as our study population, of which 3816 (30.8%) patients experienced delirium incidents during the study period. Based on the exclusion criteria, out of the 96,016 ICU admission cases in the MIMIC-III data set, 2061 cases were included, and 272 (13.2%) delirium incidents occurred. The average AUROCs and 95% CIs for internal validation were 0.916 (95% CI 0.916-0.916) for RF, 0.919 (95% CI 0.919-0.919) for XGBoost, 0.881 (95% CI 0.878-0.884) for DNN, and 0.875 (95% CI 0.875-0.875) for LR. Regarding the external validation, the best AUROC were 0.721 (95% CI 0.72-0.721) for RF, 0.697 (95% CI 0.695-0.699) for XGBoost, 0.655 (95% CI 0.654-0.657) for DNN, and 0.631 (95% CI 0.631-0.631) for LR. The Brier score of the RF model is 0.168, indicating that it is well-calibrated. CONCLUSIONS: A machine learning approach based on electronic health record data can be used to predict delirium within 24 hours of ICU admission. RF, XGBoost, DNN, and LR models were used, and they effectively predicted delirium. However, with the potential to advise ICU physicians and prevent ICU delirium, prospective studies are required to verify the algorithm's performance.

6.
JMIR Med Inform ; 9(7): e24651, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34309570

RESUMO

BACKGROUND: Appropriate empirical treatment for candidemia is associated with reduced mortality; however, the timely diagnosis of candidemia in patients with sepsis remains poor. OBJECTIVE: We aimed to use machine learning algorithms to develop and validate a candidemia prediction model for patients with cancer. METHODS: We conducted a single-center retrospective study using the cancer registry of a tertiary academic hospital. Adult patients diagnosed with malignancies between January 2010 and December 2018 were included. Our study outcome was the prediction of candidemia events. A stratified undersampling method was used to extract control data for algorithm learning. Multiple models were developed-a combination of 4 variable groups and 5 algorithms (auto-machine learning, deep neural network, gradient boosting, logistic regression, and random forest). The model with the largest area under the receiver operating characteristic curve (AUROC) was selected as the Candida detection (CanDETEC) model after comparing its performance indexes with those of the Candida Score Model. RESULTS: From a total of 273,380 blood cultures from 186,404 registered patients with cancer, we extracted 501 records of candidemia events and 2000 records as control data. Performance among the different models varied (AUROC 0.771- 0.889), with all models demonstrating superior performance to that of the Candida Score (AUROC 0.677). The random forest model performed the best (AUROC 0.889, 95% CI 0.888-0.889); therefore, it was selected as the CanDETEC model. CONCLUSIONS: The CanDETEC model predicted candidemia in patients with cancer with high discriminative power. This algorithm could be used for the timely diagnosis and appropriate empirical treatment of candidemia.

7.
J Med Internet Res ; 23(7): e28361, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36260382

RESUMO

BACKGROUND: Out-of-hospital cardiac arrest (OHCA) is a serious public health issue, and predicting the prognosis of OHCA patients can assist clinicians in making decisions about the treatment of patients, use of hospital resources, or termination of resuscitation. OBJECTIVE: This study aimed to develop a time-adaptive conditional prediction model (TACOM) to predict clinical outcomes every minute. METHODS: We performed a retrospective observational study using data from the Korea OHCA Registry in South Korea. In this study, we excluded patients with trauma, those who experienced return of spontaneous circulation before arriving in the emergency department (ED), and those who did not receive cardiopulmonary resuscitation (CPR) in the ED. We selected patients who received CPR in the ED. To develop the time-adaptive prediction model, we organized the training data set as ongoing CPR patients by the minute. A total of 49,669 patients were divided into 39,602 subjects for training and 10,067 subjects for validation. We compared random forest, LightGBM, and artificial neural networks as the prediction model methods. Model performance was quantified using the prediction probability of the model, area under the receiver operating characteristic curve (AUROC), and area under the precision recall curve. RESULTS: Among the three algorithms, LightGBM showed the best performance. From 0 to 30 min, the AUROC of the TACOM for predicting good neurological outcomes ranged from 0.910 (95% CI 0.910-0.911) to 0.869 (95% CI 0.865-0.871), whereas that for survival to hospital discharge ranged from 0.800 (95% CI 0.797-0.800) to 0.734 (95% CI 0.736-0.740). The prediction probability of the TACOM showed similar flow with cohort data based on a comparison with the conventional model's prediction probability. CONCLUSIONS: The TACOM predicted the clinical outcome of OHCA patients per minute. This model for predicting patient outcomes by the minute can assist clinicians in making rational decisions for OHCA patients.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca Extra-Hospitalar , Humanos , Parada Cardíaca Extra-Hospitalar/terapia , Estudos de Coortes , Reanimação Cardiopulmonar/métodos , Sistema de Registros , Serviço Hospitalar de Emergência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA