Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(5): e1011236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722825

RESUMO

Patients with ER-negative breast cancer have the worst prognosis of all breast cancer subtypes, often experiencing rapid recurrence or progression to metastatic disease shortly after diagnosis. Given that metastasis is the primary cause of mortality in most solid tumors, understanding metastatic biology is crucial for effective intervention. Using a mouse systems genetics approach, we previously identified 12 genes associated with metastatic susceptibility. Here, we extend those studies to identify Resf1, a poorly characterized gene, as a novel metastasis susceptibility gene in ER- breast cancer. Resf1 is a large, unstructured protein with an evolutionarily conserved intron-exon structure, but with poor amino acid conservation. CRISPR or gene trap mouse models crossed to the Polyoma Middle-T antigen genetically engineered mouse model (MMTV-PyMT) demonstrated that reduction of Resf1 resulted in a significant increase in tumor growth, a shortened overall survival time, and increased incidence and number of lung metastases, consistent with patient data. Furthermore, an analysis of matched tail and primary tissues revealed loss of the wildtype copy in tumor tissue, consistent with Resf1 being a tumor suppressor. Mechanistic analysis revealed a potential role of Resf1 in transcriptional control through association with compound G4 quadruplexes in expressed sequences, particularly those associated with ribosomal biogenesis. These results suggest that loss of Resf1 enhances tumor progression in ER- breast cancer through multiple alterations in both transcriptional and translational control.


Assuntos
Proteínas Repressoras , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Quadruplex G , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38410432

RESUMO

Acetylation of protein and RNA represent a critical event for development and cancer progression. NAT10 is the only known RNA acetylase that catalyzes the N4-actylcytidine (ac4C) modification of RNAs. Here, we show that the loss of NAT10 significantly decreases lung metastasis in allograft and genetically engineered mouse models of breast cancer. NAT10 interacts with a mechanosensitive, metastasis susceptibility protein complex at the nuclear pore. In addition to its canonical role in RNA acetylation, we find that NAT10 interacts with p300 at gene enhancers. NAT10 loss is associated with p300 mislocalization into heterochromatin regions. NAT10 depletion disrupts enhancer organization, leading to alteration of gene transcription necessary for metastatic progression, including reduced myeloid cell-recruiting chemokines that results in a less metastasis-prone tumor microenvironment. Our study uncovers a distinct role of NAT10 in enhancer organization of metastatic tumor cells and suggests its involvement in the tumor-immune crosstalk dictating metastatic outcomes.

3.
bioRxiv ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38410477

RESUMO

Breast cancer is the most frequently diagnosed cancer worldwide, constituting around 15% of all diagnosed cancers in 2023. The predominant cause of breast cancer-related mortality is metastasis to distant essential organs, and a lack of metastasis-targeted therapies perpetuates dismal outcomes for late-stage patients. However, through our use of meiotic genetics to study inherited transcriptional network regulation, we have identified a new class of "Goldilocks" genes that are promising candidates for the development of metastasis-targeted therapeutics. Building upon previous work that implicated the CCR4-NOT RNA deadenylase complex in metastasis, we now demonstrate that the RNA-binding proteins (RNA-BPs) NANOS1, PUM2, and CPSF4 also regulate metastatic potential. Using cell lines, 3D culture, mouse models, and clinical data, we pinpoint Smarcd1 mRNA as a key target of all three RNA-BPs. Strikingly, both high and low expression of Smarcd1 is associated with positive clinical outcomes, while intermediate expression significantly reduces the probability of survival. Applying the theory of "essential genes" from evolution, we identify an additional 50 genes that span several cellular processes and must be maintained within a discrete window of expression for metastasis to occur. In the case of Smarcd1, small perturbations in its expression level significantly reduce metastasis in laboratory mouse models and alter splicing programs relevant to the ER+/HER2-enriched breast cancer subtype. The identification of subtype-specific "Goldilocks" metastasis modifier genes introduces a new class of genes and potential catalogue of novel targets that, when therapeutically "nudged" in either direction, may significantly improve late-stage patient outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA