Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Science ; 385(6705): eadl6173, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991060

RESUMO

Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic gene across human cancers. Mutant IDH1 (mIDH1) generates the oncometabolite (R)-2-hydroxyglutarate, disrupting enzymes involved in epigenetics and other processes. A hallmark of IDH1-mutant solid tumors is T cell exclusion, whereas mIDH1 inhibition in preclinical models restores antitumor immunity. Here, we define a cell-autonomous mechanism of mIDH1-driven immune evasion. IDH1-mutant solid tumors show selective hypermethylation and silencing of the cytoplasmic double-stranded DNA (dsDNA) sensor CGAS, compromising innate immune signaling. mIDH1 inhibition restores DNA demethylation, derepressing CGAS and transposable element (TE) subclasses. dsDNA produced by TE-reverse transcriptase (TE-RT) activates cGAS, triggering viral mimicry and stimulating antitumor immunity. In summary, we demonstrate that mIDH1 epigenetically suppresses innate immunity and link endogenous RT activity to the mechanism of action of a US Food and Drug Administration-approved oncology drug.


Assuntos
Evasão da Resposta Imune , Imunidade Inata , Isocitrato Desidrogenase , Neoplasias , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , DNA/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Epigênese Genética , Glutaratos/metabolismo , Imunidade Inata/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Neoplasias/imunologia , Neoplasias/genética , Nucleotidiltransferases/genética , Evasão Tumoral , Evasão da Resposta Imune/genética
2.
Sci Transl Med ; 16(747): eadj7685, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748774

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is an aggressive bile duct malignancy that frequently exhibits isocitrate dehydrogenase (IDH1/IDH2) mutations. Mutant IDH (IDHm) ICC is dependent on SRC kinase for growth and survival and is hypersensitive to inhibition by dasatinib, but the molecular mechanism underlying this sensitivity is unclear. We found that dasatinib reduced p70 S6 kinase (S6K) and ribosomal protein S6 (S6), leading to substantial reductions in cell size and de novo protein synthesis. Using an unbiased phosphoproteomic screen, we identified membrane-associated guanylate kinase, WW, and PDZ domain containing 1 (MAGI1) as an SRC substrate in IDHm ICC. Biochemical and functional assays further showed that SRC inhibits a latent tumor-suppressing function of the MAGI1-protein phosphatase 2A (PP2A) complex to activate S6K/S6 signaling in IDHm ICC. Inhibiting SRC led to activation and increased access of PP2A to dephosphorylate S6K, resulting in cell death. Evidence from patient tissue and cell line models revealed that both intrinsic and extrinsic resistance to dasatinib is due to increased phospho-S6 (pS6). To block pS6, we paired dasatinib with the S6K/AKT inhibitor M2698, which led to a marked reduction in pS6 in IDHm ICC cell lines and patient-derived organoids in vitro and substantial growth inhibition in ICC patient-derived xenografts in vivo. Together, these results elucidated the mechanism of action of dasatinib in IDHm ICC, revealed a signaling complex regulating S6K phosphorylation independent of mTOR, suggested markers for dasatinib sensitivity, and described a combination therapy for IDHm ICC that may be actionable in the clinic.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Colangiocarcinoma , Dasatinibe , Isocitrato Desidrogenase , Mutação , Quinases da Família src , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Humanos , Dasatinibe/farmacologia , Mutação/genética , Quinases da Família src/metabolismo , Quinases da Família src/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Animais , Moléculas de Adesão Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo
3.
Nat Commun ; 15(1): 3805, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714664

RESUMO

Genomic alterations that activate Fibroblast Growth Factor Receptor 2 (FGFR2) are common in intrahepatic cholangiocarcinoma (ICC) and confer sensitivity to FGFR inhibition. However, the depth and duration of response is often limited. Here, we conduct integrative transcriptomics, metabolomics, and phosphoproteomics analysis of patient-derived models to define pathways downstream of oncogenic FGFR2 signaling that fuel ICC growth and to uncover compensatory mechanisms associated with pathway inhibition. We find that FGFR2-mediated activation of Nuclear factor-κB (NF-κB) maintains a highly glycolytic phenotype. Conversely, FGFR inhibition blocks glucose uptake and glycolysis while inciting adaptive changes, including switching fuel source utilization favoring fatty acid oxidation and increasing mitochondrial fusion and autophagy. Accordingly, FGFR inhibitor efficacy is potentiated by combined mitochondrial targeting, an effect enhanced in xenograft models by intermittent fasting. Thus, we show that oncogenic FGFR2 signaling drives NF-κB-dependent glycolysis in ICC and that metabolic reprogramming in response to FGFR inhibition confers new targetable vulnerabilities.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Glucose , Glicólise , NF-kappa B , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Transdução de Sinais , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Humanos , NF-kappa B/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Animais , Glicólise/efeitos dos fármacos , Glucose/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Camundongos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Pirimidinas/farmacologia , Autofagia/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
4.
Mol Ther ; 32(5): 1373-1386, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38504517

RESUMO

Epidemiological studies show that individuals who carry the relatively uncommon APOE ε2 allele rarely develop Alzheimer disease, and if they do, they have a later age of onset, milder clinical course, and less severe neuropathological findings than people without this allele. The contrast is especially stark when compared with the major genetic risk factor for Alzheimer disease, APOE ε4, which has an age of onset several decades earlier, a more aggressive clinical course and more severe neuropathological findings, especially in terms of the amount of amyloid deposition. Here, we demonstrate that brain exposure to APOE ε2 via a gene therapy approach, which bathes the entire cortical mantle in the gene product after transduction of the ependyma, reduces Aß plaque deposition, neurodegenerative synaptic loss, and, remarkably, reduces microglial activation in an APP/PS1 mouse model despite continued expression of human APOE ε4. This result suggests a promising protective effect of exogenous APOE ε2 and reveals a cell nonautonomous effect of the protein on microglial activation, which we show is similar to plaque-associated microglia in the brain of Alzheimer disease patients who inherit APOE ε2. These data increase the potential that an APOE ε2 therapeutic could be effective in Alzheimer disease, even in individuals born with the risky ε4 allele.


Assuntos
Doença de Alzheimer , Apolipoproteína E2 , Modelos Animais de Doenças , Terapia Genética , Camundongos Transgênicos , Microglia , Placa Amiloide , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/etiologia , Camundongos , Terapia Genética/métodos , Humanos , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Microglia/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores
5.
iScience ; 27(2): 108807, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303726

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited treatment options. Standard care includes radiation therapy (RT) to curb tumor growth and alleviate symptoms, but its impact on GBM is limited. In this study, we investigated the effect of RT on immune suppression and whether extracellular vesicles (EVs) originating from GBM and taken up by the tumor microenvironment (TME) contribute to the induced therapeutic resistance. We observed that (1) ionizing radiation increases immune-suppressive markers on GBM cells, (2) macrophages exacerbate immune suppression in the TME by increasing PD-L1 in response to EVs derived from GBM cells which is further modulated by RT, and (3) RT increases CD206-positive macrophages which have the most potential in inducing a pro-oncogenic environment due to their increased uptake of tumor-derived EVs. In conclusion, RT affects GBM resistance by immuno-modulating EVs taken up by myeloid cells in the TME.

6.
Cell Chem Biol ; 31(2): 338-348.e5, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989314

RESUMO

Chimeric antigen receptor (CAR) T cell therapies are medical breakthroughs in cancer treatment. However, treatment failure is often caused by CAR T cell dysfunction. Additional approaches are needed to overcome inhibitory signals that limit anti-tumor potency. Here, we developed bifunctional fusion "degrader" proteins that bridge one or more target proteins and an E3 ligase complex to enforce target ubiquitination and degradation. Conditional degradation strategies were developed using inducible degrader transgene expression or small molecule-dependent E3 recruitment. We further engineered degraders to block SMAD-dependent TGFß signaling using a domain from the SARA protein to target both SMAD2 and SMAD3. SMAD degrader CAR T cells were less susceptible to suppression by TGFß and demonstrated enhanced anti-tumor potency in vivo. These results demonstrate a clinically suitable synthetic biology platform to reprogram E3 ligase target specificity for conditional, multi-specific endogenous protein degradation, with promising applications including enhancing the potency of CAR T cell therapy.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Imunoterapia Adotiva/métodos , Ubiquitinação , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
7.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292633

RESUMO

Our data previously revealed that chemosurviving cancer cells translate specific genes. Here, we find that the m6A-RNA-methyltransferase, METTL3, increases transiently in chemotherapy-treated breast cancer and leukemic cells in vitro and in vivo. Consistently, m6A increases on RNA from chemo-treated cells, and is needed for chemosurvival. This is regulated by eIF2α phosphorylation and mTOR inhibition upon therapy treatment. METTL3 mRNA purification reveals that eIF3 promotes METTL3 translation that is reduced by mutating a 5'UTR m6A-motif or depleting METTL3. METTL3 increase is transient after therapy treatment, as metabolic enzymes that control methylation and thus m6A levels on METTL3 RNA, are altered over time after therapy. Increased METTL3 reduces proliferation and anti-viral immune response genes, and enhances invasion genes, which promote tumor survival. Consistently, overriding phospho-eIF2α prevents METTL3 elevation, and reduces chemosurvival and immune-cell migration. These data reveal that therapy-induced stress signals transiently upregulate METTL3 translation, to alter gene expression for tumor survival.

8.
Nat Cancer ; 4(3): 365-381, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914816

RESUMO

Adult liver malignancies, including intrahepatic cholangiocarcinoma and hepatocellular carcinoma, are the second leading cause of cancer-related deaths worldwide. Most individuals are treated with either combination chemotherapy or immunotherapy, respectively, without specific biomarkers for selection. Here using high-throughput screens, proteomics and in vitro resistance models, we identify the small molecule YC-1 as selectively active against a defined subset of cell lines derived from both liver cancer types. We demonstrate that selectivity is determined by expression of the liver-resident cytosolic sulfotransferase enzyme SULT1A1, which sulfonates YC-1. Sulfonation stimulates covalent binding of YC-1 to lysine residues in protein targets, enriching for RNA-binding factors. Computational analysis defined a wider group of structurally related SULT1A1-activated small molecules with distinct target profiles, which together constitute an untapped small-molecule class. These studies provide a foundation for preclinical development of these agents and point to the broader potential of exploiting SULT1A1 activity for selective targeting strategies.


Assuntos
Alquilantes , Neoplasias Hepáticas , Humanos , Sulfotransferases , Neoplasias Hepáticas/tratamento farmacológico , Arilsulfotransferase
9.
Cell Rep Med ; 3(12): 100848, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36476388

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a delayed-onset, COVID-19-related hyperinflammatory illness characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigenemia, cytokine storm, and immune dysregulation. In severe COVID-19, neutrophil activation is central to hyperinflammatory complications, yet the role of neutrophils in MIS-C is undefined. Here, we collect blood from 152 children: 31 cases of MIS-C, 43 cases of acute pediatric COVID-19, and 78 pediatric controls. We find that MIS-C neutrophils display a granulocytic myeloid-derived suppressor cell (G-MDSC) signature with highly altered metabolism that is distinct from the neutrophil interferon-stimulated gene (ISG) response we observe in pediatric COVID-19. Moreover, we observe extensive spontaneous neutrophil extracellular trap (NET) formation in MIS-C, and we identify neutrophil activation and degranulation signatures. Mechanistically, we determine that SARS-CoV-2 immune complexes are sufficient to trigger NETosis. Our findings suggest that hyperinflammatory presentation during MIS-C could be mechanistically linked to persistent SARS-CoV-2 antigenemia, driven by uncontrolled neutrophil activation and NET release in the vasculature.


Assuntos
COVID-19 , Neutrófilos , Humanos , Criança , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico
10.
Sci Adv ; 8(43): eabo1304, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36306353

RESUMO

Quiescent leukemic cells survive chemotherapy, with translation changes. Our data reveal that FXR1, a protein amplified in several aggressive cancers, is elevated in quiescent and chemo-treated leukemic cells and promotes chemosurvival. This suggests undiscovered roles for this RNA- and ribosome-associated protein in chemosurvival. We find that FXR1 depletion reduces translation, with altered rRNAs, snoRNAs, and ribosomal proteins (RPs). FXR1 regulates factors that promote transcription and processing of ribosomal genes and snoRNAs. Ribosome changes in FXR1-overexpressing cells, including RPLP0/uL10 levels, activate eIF2α kinases. Accordingly, phospho-eIF2α increases, enabling selective translation of survival and immune regulators in FXR1-overexpressing cells. Overriding these genes or phospho-eIF2α with inhibitors reduces chemosurvival. Thus, elevated FXR1 in quiescent or chemo-treated leukemic cells alters ribosomes that trigger stress signals to redirect translation for chemosurvival.

11.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35657353

RESUMO

Cancer immunology research is largely focused on the role of cytotoxic immune responses against advanced cancers. Herein, we demonstrate that CD4+ T helper (Th2) cells directly block spontaneous breast carcinogenesis by inducing the terminal differentiation of the cancer cells. Th2 cell immunity, stimulated by thymic stromal lymphopoietin, caused the epigenetic reprogramming of the tumor cells, activating mammary gland differentiation and suppressing epithelial-mesenchymal transition. Th2 polarization was required for this tumor antigen-specific immunity, which persisted in the absence of CD8+ T and B cells. Th2 cells directly blocked breast carcinogenesis by secreting IL-3, IL-5, and GM-CSF, which signaled to their common receptor expressed on breast tumor cells. Importantly, Th2 cell immunity permanently reverted high-grade breast tumors into low-grade, fibrocystic-like structures. Our findings reveal a critical role for CD4+ Th2 cells in immunity against breast cancer, which is mediated by terminal differentiation as a distinct effector mechanism for cancer immunoprevention and therapy.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos , Carcinogênese/patologia , Diferenciação Celular , Citocinas , Feminino , Humanos , Imunoterapia , Células Th1 , Células Th2
12.
Cancer Res ; 82(6): 1084-1097, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35045985

RESUMO

Cancer therapy often results in heterogeneous responses in different metastatic lesions in the same patient. Inter- and intratumor heterogeneity in signaling within various tumor compartments and its impact on therapy are not well characterized due to the limited sensitivity of single-cell proteomic approaches. To overcome this barrier, we applied single-cell mass cytometry with a customized 26-antibody panel to PTEN-deleted orthotopic prostate cancer xenograft models to measure the evolution of kinase activities in different tumor compartments during metastasis or drug treatment. Compared with primary tumors and circulating tumor cells (CTC), bone metastases, but not lung and liver metastases, exhibited elevated PI3K/mTOR signaling and overexpressed receptor tyrosine kinases (RTK) including c-MET protein. Suppression of c-MET impaired tumor growth in the bone. Intratumoral heterogeneity within tumor compartments also arose from highly proliferative EpCAM-high epithelial cells with increased PI3K and mTOR kinase activities coexisting with poorly proliferating EpCAM-low mesenchymal populations with reduced kinase activities; these findings were recapitulated in epithelial and mesenchymal CTC populations in patients with metastatic prostate and breast cancer. Increased kinase activity in EpCAM-high cells rendered them more sensitive to PI3K/mTOR inhibition, and drug-resistant EpCAM-low populations with reduced kinase activity emerged over time. Taken together, single-cell proteomics indicate that microenvironment- and cell state-dependent activation of kinase networks create heterogeneity and differential drug sensitivity among and within tumor populations across different sites, defining a new paradigm of drug responses to kinase inhibitors. SIGNIFICANCE: Single-cell mass cytometry analyses provide insights into the differences in kinase activities across tumor compartments and cell states, which contribute to heterogeneous responses to targeted therapies.


Assuntos
Neoplasias da Próstata , Proteômica , Animais , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral
13.
Cell Rep ; 37(5): 109955, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731634

RESUMO

Macrophages undergoing M1- versus M2-type polarization differ significantly in their cell metabolism and cellular functions. Here, global quantitative time-course proteomics and phosphoproteomics paired with transcriptomics provide a comprehensive characterization of temporal changes in cell metabolism, cellular functions, and signaling pathways that occur during the induction phase of M1- versus M2-type polarization. Significant differences in, especially, metabolic pathways are observed, including changes in glucose metabolism, glycosaminoglycan metabolism, and retinoic acid signaling. Kinase-enrichment analysis shows activation patterns of specific kinases that are distinct in M1- versus M2-type polarization. M2-type polarization inhibitor drug screens identify drugs that selectively block M2- but not M1-type polarization, including mitogen-activated protein kinase kinase (MEK) and histone deacetylase (HDAC) inhibitors. These datasets provide a comprehensive resource to identify specific signaling and metabolic pathways that are critical for macrophage polarization. In a proof-of-principle approach, we use these datasets to show that MEK signaling is required for M2-type polarization by promoting peroxisome proliferator-activated receptor-γ (PPARγ)-induced retinoic acid signaling.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteoma , Proteômica , Animais , Metabolismo Energético , Humanos , Interleucina-4/farmacologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Fenótipo , Fosforilação , Estudo de Prova de Conceito , Transdução de Sinais , Células THP-1 , Fatores de Tempo , Tretinoína/farmacologia
14.
FASEB J ; 35(12): e22019, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34792819

RESUMO

Exogenously applied mature naïve B220+ /CD19+ /IgM+ /IgD+ B cells are strongly protective in the context of tissue injury. However, the mechanisms by which B cells detect tissue injury and aid repair remain elusive. Here, we show in distinct models of skin and brain injury that MyD88-dependent toll-like receptor (TLR) signaling through TLR2/6 and TLR4 is essential for the protective benefit of B cells in vivo, while B cell-specific deletion of MyD88 abrogated this effect. The B cell response to injury was multi-modal with simultaneous production of both regulatory cytokines, such as IL-10, IL-35, and transforming growth factor beta (TGFß), and inflammatory cytokines, such as tumor necrosis factor alpha (TNFα), IL-6, and interferon gamma. Cytometry analysis showed that this response was time and environment-dependent in vivo, with 20%-30% of applied B cells adopting an immune modulatory phenotype with high co-expression of anti- and pro-inflammatory cytokines after 18-48 h at the injury site. B cell treatment reduced the expression of TNFα and increased IL-10 and TGFß in infiltrating immune cells and fibroblasts at the injury site. Proteomic analysis further showed that B cells have a complex time-dependent homeostatic effect on the injured microenvironment, reducing the expression of inflammation-associated proteins, and increasing proteins associated with proliferation, tissue remodeling, and protection from oxidative stress. These findings chart and validate a first mechanistic understanding of the effects of B cells as an immunomodulatory cell therapy in the context of tissue injury.


Assuntos
Linfócitos B/fisiologia , Lesões Encefálicas/prevenção & controle , Citocinas/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Pele/imunologia , Cicatrização , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Interleucina-10/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transdução de Sinais , Pele/lesões , Pele/metabolismo , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Commun Biol ; 4(1): 977, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404904

RESUMO

Inactivation of RB is one of the hallmarks of cancer, however gaps remain in our understanding of how RB-loss changes human cells. Here we show that pRB-depletion results in cellular reprogramming, we quantitatively measured how RB-depletion altered the transcriptional, proteomic and metabolic output of non-tumorigenic RPE1 human cells. These profiles identified widespread changes in metabolic and cell stress response factors previously linked to E2F function. In addition, we find a number of additional pathways that are sensitive to RB-depletion that are not E2F-regulated that may represent compensatory mechanisms to support the growth of RB-depleted cells. To determine whether these molecular changes are also present in RB1-/- tumors, we compared these results to Retinoblastoma and Small Cell Lung Cancer data, and identified widespread conservation of alterations found in RPE1 cells. To define which of these changes contribute to the growth of cells with de-regulated E2F activity, we assayed how inhibiting or depleting these proteins affected the growth of RB1-/- cells and of Drosophila E2f1-RNAi models in vivo. From this analysis, we identify key metabolic pathways that are essential for the growth of pRB-deleted human cells.


Assuntos
Neoplasias da Retina/fisiopatologia , Proteínas de Ligação a Retinoblastoma/genética , Retinoblastoma/fisiopatologia , Ubiquitina-Proteína Ligases/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Proteínas de Ligação a Retinoblastoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
Elife ; 102021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34251339

RESUMO

The E2F transcription factors play a critical role in controlling cell fate. In Drosophila, the inactivation of E2F in either muscle or fat body results in lethality, suggesting an essential function for E2F in these tissues. However, the cellular and organismal consequences of inactivating E2F in these tissues are not fully understood. Here, we show that the E2F loss exerts both tissue-intrinsic and systemic effects. The proteomic profiling of E2F-deficient muscle and fat body revealed that E2F regulates carbohydrate metabolism, a conclusion further supported by metabolomic profiling. Intriguingly, animals with E2F-deficient fat body had a lower level of circulating trehalose and reduced storage of fat. Strikingly, a sugar supplement was sufficient to restore both trehalose and fat levels, and subsequently rescued animal lethality. Collectively, our data highlight the unexpected complexity of E2F mutant phenotype, which is a result of combining both tissue-specific and systemic changes that contribute to animal development.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Transcrição E2F/metabolismo , Corpo Adiposo/metabolismo , Fatores de Transcrição/metabolismo , Animais , Metabolismo dos Carboidratos , Ciclo Celular , Drosophila , Proteínas de Drosophila/genética , Fatores de Transcrição E2F/genética , Regulação da Expressão Gênica no Desenvolvimento , Metabolômica/métodos , Músculos/metabolismo , Fenótipo , Proteômica/métodos , Fatores de Transcrição/genética , Transcrição Gênica , Trealose/metabolismo
18.
Nat Protoc ; 16(7): 3672-3694, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34108731

RESUMO

More than 90% of the human genome is transcribed into noncoding RNAs, but their functional characterization has lagged behind. A major bottleneck in the understanding of their functions and mechanisms has been a dearth of systematic methods for identifying interacting protein partners. There now exist several methods, including identification of direct RNA interacting proteins (iDRiP), chromatin isolation by RNA purification (ChIRP), and RNA antisense purification, each previously applied towards identifying a proteome for the prototype noncoding RNA, Xist. iDRiP has recently been modified to successfully identify proteomes for two additional noncoding RNAs of interest, TERRA and U1 RNA. Here we describe the modified protocol in detail, highlighting technical differences that facilitate capture of various noncoding RNAs. The protocol can be applied to short and long RNAs in both cultured cells and tissues, and requires ~1 week from start to finish. Here we also perform a comparative analysis between iDRiP and ChIRP. We obtain partially overlapping profiles, but find that iDRiP yields a greater number of specific proteins and fewer mitochondrial contaminants. With an increasing number of essential long noncoding RNAs being described, robust RNA-centric protein capture methods are critical for the probing of noncoding RNA function and mechanism.


Assuntos
Proteômica/métodos , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Reagentes de Ligações Cruzadas/química , DNA Complementar/genética , Camundongos , Ligação Proteica , Proteoma/metabolismo , Reprodutibilidade dos Testes , Raios Ultravioleta
19.
Neurobiol Aging ; 105: 99-114, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052751

RESUMO

Alzheimer's disease (AD) is defined by the presence of abundant amyloid-ß (Aß) and tau neuropathology. While this neuropathology is necessary for AD diagnosis, it is not sufficient for causing cognitive impairment. Up to one third of community dwelling older adults harbor intermediate to high levels of AD neuropathology at death yet demonstrate no significant cognitive impairment. Conversely, there are individuals who exhibit dementia with no gross explanatory neuropathology. In prior studies, synapse loss correlated with cognitive impairment. To understand how synaptic composition changes in relation to neuropathology and cognition, multiplexed liquid chromatography mass-spectrometry was used to quantify enriched synaptic proteins from the parietal association cortex of 100 subjects with contrasting levels of AD pathology and cognitive performance. 123 unique proteins were significantly associated with diagnostic category. Functional analysis showed enrichment of serotonin release and oxidative phosphorylation categories in normal (cognitively unimpaired, low neuropathology) and "resilient" (unimpaired despite AD pathology) individuals. In contrast, frail individuals, (low pathology, impaired cognition) showed a metabolic shift towards glycolysis and increased presence of proteasome subunits.


Assuntos
Envelhecimento/patologia , Envelhecimento/psicologia , Doença de Alzheimer/genética , Doença de Alzheimer/psicologia , Cognição/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Sinapses/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Cromatografia Líquida , Feminino , Glicólise , Humanos , Vida Independente , Masculino , Espectrometria de Massas , Lobo Parietal/metabolismo , Fosforilação , Serotonina/metabolismo , Sinapses/patologia
20.
J Clin Invest ; 131(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34032635

RESUMO

BACKGROUNDWeeks after SARS-CoV-2 infection or exposure, some children develop a severe, life-threatening illness called multisystem inflammatory syndrome in children (MIS-C). Gastrointestinal (GI) symptoms are common in patients with MIS-C, and a severe hyperinflammatory response ensues with potential for cardiac complications. The cause of MIS-C has not been identified to date.METHODSHere, we analyzed biospecimens from 100 children: 19 with MIS-C, 26 with acute COVID-19, and 55 controls. Stools were assessed for SARS-CoV-2 by reverse transcription PCR (RT-PCR), and plasma was examined for markers of breakdown of mucosal barrier integrity, including zonulin. Ultrasensitive antigen detection was used to probe for SARS-CoV-2 antigenemia in plasma, and immune responses were characterized. As a proof of concept, we treated a patient with MIS-C with larazotide, a zonulin antagonist, and monitored the effect on antigenemia and the patient's clinical response.RESULTSWe showed that in children with MIS-C, a prolonged presence of SARS-CoV-2 in the GI tract led to the release of zonulin, a biomarker of intestinal permeability, with subsequent trafficking of SARS-CoV-2 antigens into the bloodstream, leading to hyperinflammation. The patient with MIS-C treated with larazotide had a coinciding decrease in plasma SARS-CoV-2 spike antigen levels and inflammatory markers and a resultant clinical improvement above that achieved with currently available treatments.CONCLUSIONThese mechanistic data on MIS-C pathogenesis provide insight into targets for diagnosing, treating, and preventing MIS-C, which are urgently needed for this increasingly common severe COVID-19-related disease in children.


Assuntos
COVID-19/etiologia , COVID-19/fisiopatologia , Haptoglobinas/fisiologia , Mucosa Intestinal/fisiopatologia , Precursores de Proteínas/fisiologia , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Adolescente , Antígenos Virais/sangue , Biomarcadores/sangue , COVID-19/virologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Haptoglobinas/antagonistas & inibidores , Humanos , Lactente , Recém-Nascido , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/virologia , Masculino , Oligopeptídeos/farmacologia , Permeabilidade/efeitos dos fármacos , Estudo de Prova de Conceito , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/sangue , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Síndrome de Resposta Inflamatória Sistêmica/virologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA