Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Clin Med ; 13(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731219

RESUMO

Airway pressure release ventilation (APRV) is a protective mechanical ventilation mode for patients with acute respiratory distress syndrome (ARDS) that theoretically may reduce ventilator-induced lung injury (VILI) and ARDS-related mortality. However, there is no standard method to set and adjust the APRV mode shown to be optimal. Therefore, we performed a meta-regression analysis to evaluate how the four individual APRV settings impacted the outcome in these patients. Methods: Studies investigating the use of the APRV mode for ARDS patients were searched from electronic databases. We tested individual settings, including (1) high airway pressure (PHigh); (2) low airway pressure (PLow); (3) time at high airway pressure (THigh); and (4) time at low pressure (TLow) for association with PaO2/FiO2 ratio and ICU length of stay. Results: There was no significant difference in PaO2/FiO2 ratio between the groups in any of the four settings (PHigh difference -12.0 [95% CI -100.4, 86.4]; PLow difference 54.3 [95% CI -52.6, 161.1]; TLow difference -27.19 [95% CI -127.0, 72.6]; THigh difference -51.4 [95% CI -170.3, 67.5]). There was high heterogeneity across all parameters (PhHgh I2 = 99.46%, PLow I2 = 99.16%, TLow I2 = 99.31%, THigh I2 = 99.29%). Conclusions: None of the four individual APRV settings independently were associated with differences in outcome. A holistic approach, analyzing all settings in combination, may improve APRV efficacy since it is known that small differences in ventilator settings can significantly alter mortality. Future clinical trials should set and adjust APRV based on the best current scientific evidence available.

2.
Respir Care ; 69(11): 1432-1443, 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38408775

RESUMO

BACKGROUD: Lung volume measurements are important for monitoring functional aeration and recruitment and may help guide adjustments in ventilator settings. The expiratory phase of airway pressure release ventilation (APRV) may provide physiologic information about lung volume based on the expiratory flow-time slope, angle, and time to approach a no-flow state (expiratory time [TE]). We hypothesized that expiratory flow would correlate with estimated lung volume (ELV) as measured using a modified nitrogen washout/washin technique in a large-animal lung injury model. METHODS: Eight pigs (35.2 ± 1.0 kg) were mechanically ventilated using an Engström Carescape R860 on the APRV mode. All settings were held constant except the expiratory duration, which was adjusted based on the expiratory flow curve. Abdominal pressure was increased to 15 mm Hg in normal and injured lungs to replicate a combination of pulmonary and extrapulmonary lung injury. ELV was estimated using the Carescape FRC INview tool. The expiratory flow-time slope and TE were measured from the expiratory flow profile. RESULTS: Lung elastance increased with induced lung injury from 29.3 ± 7.3 cm H2O/L to 39.9 ± 15.1cm H2O/L, and chest wall elastance increased with increasing intra-abdominal pressures (IAPs) from 15.3 ± 4.1 cm H2O/L to 25.7 ± 10.0 cm H2O/L in the normal lung and 15.8 ± 6.0 cm H2O/L to 33.0 ± 6.2 cm H2O/L in the injured lung (P = .39). ELV decreased from 1.90 ± 0.83 L in the injured lung to 0.67 ± 0.10 L by increasing IAP to 15 mm Hg. This had a significant correlation with a TE decrease from 2.3 ± 0.8 s to 1.0 ± 0.1 s in the injured group with increasing insufflation pressures (ρ = 0.95) and with the expiratory flow-time slope, which increased from 0.29 ± 0.06 L/s2 to 0.63 ± 0.05 L/s2 (ρ = 0.78). CONCLUSIONS: Changes in ELV over time, and the TE and flow-time slope, could be used to demonstrate evolving lung injury during APRV. Using the slope to infer changes in functional lung volume represents a unique, reproducible, real-time, bedside technique that does not interrupt ventilation and may be used for clinical interpretation.


Assuntos
Insuflação , Lesão Pulmonar , Medidas de Volume Pulmonar , Pulmão , Respiração Artificial , Mecânica Respiratória , Animais , Suínos , Insuflação/métodos , Mecânica Respiratória/fisiologia , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/etiologia , Respiração Artificial/métodos , Pulmão/fisiopatologia , Modelos Animais de Doenças , Abdome/fisiopatologia , Volume de Ventilação Pulmonar , Expiração/fisiologia
3.
Respir Res ; 25(1): 37, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238778

RESUMO

Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial/métodos , Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/patologia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
4.
Curr Opin Crit Care ; 30(1): 76-84, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085878

RESUMO

PURPOSE OF REVIEW: Airway pressure release ventilation (APRV) is a modality of ventilation in which high inspiratory continuous positive airway pressure (CPAP) alternates with brief releases. In this review, we will discuss the rationale for APRV as a lung protective strategy and then provide a practical introduction to initiating APRV using the time-controlled adaptive ventilation (TCAV) method. RECENT FINDINGS: APRV using the TCAV method uses an extended inspiratory time and brief expiratory release to first stabilize and then gradually recruit collapsed lung (over hours/days), by progressively 'ratcheting' open a small volume of collapsed tissue with each breath. The brief expiratory release acts as a 'brake' preventing newly recruited units from re-collapsing, reversing the main drivers of ventilator-induced lung injury (VILI). The precise timing of each release is based on analysis of expiratory flow and is set to achieve termination of expiratory flow at 75% of the peak expiratory flow. Optimization of the release time reflects the changes in elastance and, therefore, is personalized (i.e. conforms to individual patient pathophysiology), and adaptive (i.e. responds to changes in elastance over time). SUMMARY: APRV using the TCAV method is a paradigm shift in protective lung ventilation, which primarily aims to stabilize the lung and gradually reopen collapsed tissue to achieve lung homogeneity eliminating the main mechanistic drivers of VILI.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Pressão Positiva Contínua nas Vias Aéreas/métodos , Pulmão , Respiração Artificial/efeitos adversos , Respiração , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
5.
Front Physiol ; 14: 1287416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028774

RESUMO

Patients with acute respiratory distress syndrome (ARDS) have few treatment options other than supportive mechanical ventilation. The mortality associated with ARDS remains unacceptably high, and mechanical ventilation itself has the potential to increase mortality further by unintended ventilator-induced lung injury (VILI). Thus, there is motivation to improve management of ventilation in patients with ARDS. The immediate goal of mechanical ventilation in ARDS should be to prevent atelectrauma resulting from repetitive alveolar collapse and reopening. However, a long-term goal should be to re-open collapsed and edematous regions of the lung and reduce regions of high mechanical stress that lead to regional volutrauma. In this paper, we consider the proposed strategy used by the full-term newborn to open the fluid-filled lung during the initial breaths of life, by ratcheting tissues opened over a series of initial breaths with brief expirations. The newborn's cry after birth shares key similarities with the Airway Pressure Release Ventilation (APRV) modality, in which the expiratory duration is sufficiently short to minimize end-expiratory derecruitment. Using a simple computational model of the injured lung, we demonstrate that APRV can slowly open even the most recalcitrant alveoli with extended periods of high inspiratory pressure, while reducing alveolar re-collapse with brief expirations. These processes together comprise a ratchet mechanism by which the lung is progressively recruited, similar to the manner in which the newborn lung is aerated during a series of cries, albeit over longer time scales.

7.
J Clin Med ; 12(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37510748

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with a heterogeneous pattern of injury throughout the lung parenchyma that alters regional alveolar opening and collapse time constants. Such heterogeneity leads to atelectasis and repetitive alveolar collapse and expansion (RACE). The net effect is a progressive loss of lung volume with secondary ventilator-induced lung injury (VILI). Previous concepts of ARDS pathophysiology envisioned a two-compartment system: a small amount of normally aerated lung tissue in the non-dependent regions (termed "baby lung"); and a collapsed and edematous tissue in dependent regions. Based on such compartmentalization, two protective ventilation strategies have been developed: (1) a "protective lung approach" (PLA), designed to reduce overdistension in the remaining aerated compartment using a low tidal volume; and (2) an "open lung approach" (OLA), which first attempts to open the collapsed lung tissue over a short time frame (seconds or minutes) with an initial recruitment maneuver, and then stabilize newly recruited tissue using titrated positive end-expiratory pressure (PEEP). A more recent understanding of ARDS pathophysiology identifies regional alveolar instability and collapse (i.e., hidden micro-atelectasis) in both lung compartments as a primary VILI mechanism. Based on this understanding, we propose an alternative strategy to ventilating the injured lung, which we term a "stabilize lung approach" (SLA). The SLA is designed to immediately stabilize the lung and reduce RACE while gradually reopening collapsed tissue over hours or days. At the core of SLA is time-controlled adaptive ventilation (TCAV), a method to adjust the parameters of the airway pressure release ventilation (APRV) modality. Since the acutely injured lung at any given airway pressure requires more time for alveolar recruitment and less time for alveolar collapse, SLA adjusts inspiratory and expiratory durations and inflation pressure levels. The TCAV method SLA reverses the open first and stabilize second OLA method by: (i) immediately stabilizing lung tissue using a very brief exhalation time (≤0.5 s), so that alveoli simply do not have sufficient time to collapse. The exhalation duration is personalized and adaptive to individual respiratory mechanical properties (i.e., elastic recoil); and (ii) gradually recruiting collapsed lung tissue using an inflate and brake ratchet combined with an extended inspiratory duration (4-6 s) method. Translational animal studies, clinical statistical analysis, and case reports support the use of TCAV as an efficacious lung protective strategy.

8.
J Appl Physiol (1985) ; 133(5): 1093-1105, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36135956

RESUMO

Ventilator-induced lung injury (VILI) is a significant risk for patients with acute respiratory distress syndrome (ARDS). Management of the patient with ARDS is currently dominated by the use of low tidal volume mechanical ventilation, the presumption being that this mitigates overdistension (OD) injury to the remaining normal lung tissue. Evidence exists, however, that it may be more important to avoid cyclic recruitment and derecruitment (RD) of lung units, although the relative roles of OD and RD in VILI remain unclear. Forty pigs had a heterogeneous lung injury induced by Tween instillation and were randomized into four groups (n = 10 each) with higher (↑) or lower (↓) levels of OD and/or RD imposed using airway pressure release ventilation (APRV). OD was increased by setting inspiratory airway pressure to 40 cmH2O and lessened with 28 cmH2O. RD was attenuated using a short duration of expiration (∼0.45 s) and increased with a longer duration (∼1.0 s). All groups developed mild ARDS following injury. RD ↑ OD↑ caused the greatest degree of lung injury as determined by [Formula: see text]/[Formula: see text] ratio (226.1 ± 41.4 mmHg). RD ↑ OD↓ ([Formula: see text]/[Formula: see text]= 333.9 ± 33.1 mmHg) and RD ↓ OD↑ ([Formula: see text]/[Formula: see text] = 377.4 ± 43.2 mmHg) were both moderately injurious, whereas RD ↓ OD↓ ([Formula: see text]/[Formula: see text] = 472.3 ± 22.2 mmHg; P < 0.05) was least injurious. Both tidal volume and driving pressure were essentially identical in the RD ↑ OD↓ and RD ↓ OD↑ groups. We, therefore, conclude that considerations of expiratory time may be at least as important as pressure for safely ventilating the injured lung.NEW & NOTEWORTHY In a large animal model of ARDS, recruitment/derecruitment caused greater VILI than overdistension, whereas both mechanisms together caused severe lung damage. These findings suggest that eliminating cyclic recruitment and derecruitment during mechanical ventilation should be a preeminent management goal for the patient with ARDS. The airway pressure release ventilation (APRV) mode of mechanical ventilation can achieve this if delivered with an expiratory duration (TLow) that is brief enough to prevent derecruitment at end expiration.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Lesão Pulmonar Aguda/etiologia , Pulmão , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/terapia , Suínos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia
10.
Front Physiol ; 13: 928562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957991

RESUMO

In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.

11.
Crit Care ; 26(1): 242, 2022 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-35934707

RESUMO

A hallmark of ARDS is progressive shrinking of the 'baby lung,' now referred to as the ventilator-induced lung injury (VILI) 'vortex.' Reducing the risk of the VILI vortex is the goal of current ventilation strategies; unfortunately, this goal has not been achieved nor has mortality been reduced. However, the temporal aspects of a mechanical breath have not been considered. A brief expiration prevents alveolar collapse, and an extended inspiration can recruit the atelectatic lung over hours. Time-controlled adaptive ventilation (TCAV) is a novel ventilator approach to achieve these goals, since it considers many of the temporal aspects of dynamic lung mechanics.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Pulmão , Respiração Artificial/efeitos adversos , Fenômenos Fisiológicos Respiratórios , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle
13.
J Appl Physiol (1985) ; 132(2): 564-574, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34989651

RESUMO

The time-controlled adaptive ventilation (TCAV) method attenuates lung damage in acute respiratory distress syndrome. However, so far, no study has evaluated the impact of the TCAV method on ventilator-induced lung injury (VILI) and cardiac function in emphysema. We hypothesized that the use of the TCAV method to achieve an expiratory flow termination/expiratory peak flow (EFT/EPF) of 25% could reduce VILI and improve right ventricular function in elastase-induced lung emphysema in rats. Five weeks after the last intratracheal instillation of elastase, animals were anesthetized and mechanically ventilated for 1 h using TCAV adjusted to either EFT/EPF 25% or EFT/EPF 75%, the latter often applied in acute respiratory distress syndrome (ARDS). Pressure-controlled ventilation (PCV) groups with positive end-expiratory pressure levels similar to positive end-release pressure in TCAV with EFT/EPF 25% and EFT/EPF 75% were also analyzed. Echocardiography and lung ultrasonography were monitored. Lung morphometry, alveolar heterogeneity, and biological markers related to inflammation [interleukin 6 (IL-6), CINC-1], alveolar pulmonary stretch (amphiregulin), lung matrix damage [metalloproteinase 9 (MMP-9)] were assessed. EFT/EPF 25% reduced respiratory system peak pressure, mean linear intercept, B lines at lung ultrasonography, and increased pulmonary acceleration time/pulmonary ejection time ratio compared with EFT/EPF 75%. The volume fraction of mononuclear cells, neutrophils, and expression of IL-6, CINC-1, amphiregulin, and MMP-9 were lower with EFT/EPF 25% than with EFT/EPF 75%. In conclusion, TCAV with EFT/EPF 25%, compared with EFT/EPF 75%, led to less lung inflammation, hyperinflation, and pulmonary arterial hypertension, which may be a promising strategy for patients with emphysema.NEW & NOTEWORTHY The TCAV method reduces lung damage in ARDS. However, so far, no study has evaluated the impact of the TCAV method on ventilator-induced lung injury and cardiac function in experimental emphysema. The TCAV method at EFT/EPF ratio of 25%, compared with EFT/EPF of 75% (frequently used in ARDS), reduced lung inflammation, alveolar heterogeneity and hyperinflation, and pulmonary arterial hypertension in elastase-induced emphysema. TCAV may be a promising and personalized ventilation strategy for patients with emphysema.


Assuntos
Enfisema , Enfisema Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Enfisema/metabolismo , Humanos , Pulmão/metabolismo , Respiração com Pressão Positiva/métodos , Enfisema Pulmonar/metabolismo , Ratos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo
15.
J Appl Physiol (1985) ; 130(3): 877-891, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444117

RESUMO

The worldwide pandemic caused by the SARS-CoV-2 virus has resulted in over 84,407,000 cases, with over 1,800,000 deaths when this paper was submitted, with comorbidities such as gender, race, age, body mass, diabetes, and hypertension greatly exacerbating mortality. This review will analyze the rapidly increasing knowledge of COVID-19-induced lung pathophysiology. Although controversial, the acute respiratory distress syndrome (ARDS) associated with COVID-19 (CARDS) seems to present as two distinct phenotypes: type L and type H. The "L" refers to low elastance, ventilation/perfusion ratio, lung weight, and recruitability, and the "H" refers to high pulmonary elastance, shunt, edema, and recruitability. However, the LUNG-SAFE (Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure) and ESICM (European Society of Intensive Care Medicine) Trials Groups have shown that ∼13% of the mechanically ventilated non-COVID-19 ARDS patients have the type-L phenotype. Other studies have shown that CARDS and ARDS respiratory mechanics overlap and that standard ventilation strategies apply to these patients. The mechanisms causing alterations in pulmonary perfusion could be caused by some combination of 1) renin-angiotensin system dysregulation, 2) thrombosis caused by loss of endothelial barrier, 3) endothelial dysfunction causing loss of hypoxic pulmonary vasoconstriction perfusion control, and 4) hyperperfusion of collapsed lung tissue that has been directly measured and supported by a computational model. A flowchart has been constructed highlighting the need for personalized and adaptive ventilation strategies, such as the time-controlled adaptive ventilation method, to set and adjust the airway pressure release ventilation mode, which recently was shown to be effective at improving oxygenation and reducing inspiratory fraction of oxygen, vasopressors, and sedation in patients with COVID-19.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , COVID-19/complicações , COVID-19/patologia , Lesão Pulmonar Aguda/virologia , Animais , Pressão Positiva Contínua nas Vias Aéreas/métodos , Humanos , Hipóxia/patologia , Hipóxia/virologia , Pulmão/patologia , Pulmão/virologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/patogenicidade , Vasoconstrição/fisiologia
16.
Front Physiol ; 12: 805620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35369685

RESUMO

Pediatric acute respiratory distress syndrome (PARDS) remains a significant cause of morbidity and mortality, with mortality rates as high as 50% in children with severe PARDS. Despite this, pediatric lung injury and mechanical ventilation has been poorly studied, with the majority of investigations being observational or retrospective and with only a few randomized controlled trials to guide intensivists. The most recent and universally accepted guidelines for pediatric lung injury are based on consensus opinion rather than objective data. Therefore, most neonatal and pediatric mechanical ventilation practices have been arbitrarily adapted from adult protocols, neglecting the differences in lung pathophysiology, response to injury, and co-morbidities among the three groups. Low tidal volume ventilation has been generally accepted for pediatric patients, even in the absence of supporting evidence. No target tidal volume range has consistently been associated with outcomes, and compliance with delivering specific tidal volume ranges has been poor. Similarly, optimal PEEP has not been well-studied, with a general acceptance of higher levels of F i O2 and less aggressive PEEP titration as compared with adults. Other modes of ventilation including airway pressure release ventilation and high frequency ventilation have not been studied in a systematic fashion and there is too little evidence to recommend supporting or refraining from their use. There have been no consistent outcomes among studies in determining optimal modes or methods of setting them. In this review, the studies performed to date on mechanical ventilation strategies in neonatal and pediatric populations will be analyzed. There may not be a single optimal mechanical ventilation approach, where the best method may simply be one that allows for a personalized approach with settings adapted to the individual patient and disease pathophysiology. The challenges and barriers to conducting well-powered and robust multi-institutional studies will also be addressed, as well as reconsidering outcome measures and study design.

17.
Crit Care Explor ; 2(12): e0299, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33354673

RESUMO

OBJECTIVES: Elucidate how the degree of ventilator-induced lung injury due to atelectrauma that is produced in the injured lung during mechanical ventilation is determined by both the timing and magnitude of the airway pressure profile. DESIGN: A computational model of the injured lung provides a platform for exploring how mechanical ventilation parameters potentially modulate atelectrauma and volutrauma. This model incorporates the time dependence of lung recruitment and derecruitment, and the time-constant of lung emptying during expiration as determined by overall compliance and resistance of the respiratory system. SETTING: Computational model. SUBJECTS: Simulated scenarios representing patients with both normal and acutely injured lungs. MEASUREMENTS AND MAIN RESULTS: Protective low-tidal volume ventilation (Low-Vt) of the simulated injured lung avoided atelectrauma through the elevation of positive end-expiratory pressure while maintaining fixed tidal volume and driving pressure. In contrast, airway pressure release ventilation avoided atelectrauma by incorporating a very brief expiratory duration () that both prevents enough time for derecruitment and limits the minimum alveolar pressure prior to inspiration. Model simulations demonstrated that has an effective threshold value below which airway pressure release ventilation is safe from atelectrauma while maintaining a tidal volume and driving pressure comparable with those of Low-Vt. This threshold is strongly influenced by the time-constant of lung-emptying. CONCLUSIONS: Low-Vt and airway pressure release ventilation represent markedly different strategies for the avoidance of ventilator-induced lung injury, primarily involving the manipulation of positive end-expiratory pressure and , respectively. can be based on exhalation flow values, which may provide a patient-specific approach to protective ventilation.

18.
Am J Respir Crit Care Med ; 202(8): 1081-1087, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33054329

RESUMO

Protective ventilation strategies for the injured lung currently revolve around the use of low Vt, ostensibly to avoid volutrauma, together with positive end-expiratory pressure to increase the fraction of open lung and reduce atelectrauma. Protective ventilation is currently applied in a one-size-fits-all manner, and although this practical approach has reduced acute respiratory distress syndrome deaths, mortality is still high and improvements are at a standstill. Furthermore, how to minimize ventilator-induced lung injury (VILI) for any given lung remains controversial and poorly understood. Here we present a hypothesis of VILI pathogenesis that potentially serves as a basis upon which minimally injurious ventilation strategies might be developed. This hypothesis is based on evidence demonstrating that VILI begins in isolated lung regions manifesting a Permeability-Originated Obstruction Response (POOR) in which alveolar leak leads to surfactant dysfunction and increases local tissue stresses. VILI progresses topographically outward from these regions in a POOR-get-POORer fashion unless steps are taken to interrupt it. We propose that interrupting the POOR-get-POORer progression of lung injury relies on two principles: 1) open the lung to minimize the presence of heterogeneity-induced stress concentrators that are focused around the regions of atelectasis, and 2) ventilate in a patient-dependent manner that minimizes the number of lung units that close during each expiration so that they are not forced to rerecruit during the subsequent inspiration. These principles appear to be borne out in both patient and animal studies in which expiration is terminated before derecruitment of lung units has enough time to occur.


Assuntos
Prevenção Primária/métodos , Atelectasia Pulmonar/prevenção & controle , Edema Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/fisiopatologia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Doença Aguda , Fenômenos Biomecânicos , Doença Crônica , Feminino , Humanos , Masculino , Monitorização Fisiológica , Prognóstico , Atelectasia Pulmonar/etiologia , Edema Pulmonar/etiologia , Síndrome do Desconforto Respiratório/terapia , Testes de Função Respiratória
19.
Front Physiol ; 11: 233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265735

RESUMO

Morbidity and mortality associated with lung injury remains disappointingly unchanged over the last two decades, in part due to the current reliance on lung macro-parameters set on the ventilator instead of considering the micro-environment and the response of the alveoli and alveolar ducts to ventilator adjustments. The response of alveoli and alveolar ducts to mechanical ventilation modes cannot be predicted with current bedside methods of assessment including lung compliance, oxygenation, and pressure-volume curves. Alveolar tidal volumes (Vt) are less determined by the Vt set on the mechanical ventilator and more dependent on the number of recruited alveoli available to accommodate that Vt and their heterogeneous mechanical properties, such that high lung Vt can lead to a low alveolar Vt and low Vt can lead to high alveolar Vt. The degree of alveolar heterogeneity that exists cannot be predicted based on lung calculations that average the individual alveolar Vt and compliance. Finally, the importance of time in promoting alveolar stability, specifically the inspiratory and expiratory times set on the ventilator, are currently under-appreciated. In order to improve outcomes related to lung injury, the respiratory physiology of the individual patient, specifically at the level of the alveolus, must be targeted. With experimental data, this review highlights some of the known mechanical ventilation adjustments that are helpful or harmful at the level of the alveolus.

20.
Front Physiol ; 11: 227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265734

RESUMO

Acute respiratory distress syndrome (ARDS) causes a heterogeneous lung injury and remains a serious medical problem, with one of the only treatments being supportive care in the form of mechanical ventilation. It is very difficult, however, to mechanically ventilate the heterogeneously damaged lung without causing secondary ventilator-induced lung injury (VILI). The acutely injured lung becomes time and pressure dependent, meaning that it takes more time and pressure to open the lung, and it recollapses more quickly and at higher pressure. Current protective ventilation strategies, ARDSnet low tidal volume (LVt) and the open lung approach (OLA), have been unsuccessful at further reducing ARDS mortality. We postulate that this is because the LVt strategy is constrained to ventilating a lung with a heterogeneous mix of normal and focalized injured tissue, and the OLA, although designed to fully open and stabilize the lung, is often unsuccessful at doing so. In this review we analyzed the pathophysiology of ARDS that renders the lung susceptible to VILI. We also analyzed the alterations in alveolar and alveolar duct mechanics that occur in the acutely injured lung and discussed how these alterations are a key mechanism driving VILI. Our analysis suggests that the time component of each mechanical breath, at both inspiration and expiration, is critical to normalize alveolar mechanics and protect the lung from VILI. Animal studies and a meta-analysis have suggested that the time-controlled adaptive ventilation (TCAV) method, using the airway pressure release ventilation mode, eliminates the constraints of ventilating a lung with heterogeneous injury, since it is highly effective at opening and stabilizing the time- and pressure-dependent lung. In animal studies it has been shown that by "casting open" the acutely injured lung with TCAV we can (1) reestablish normal expiratory lung volume as assessed by direct observation of subpleural alveoli; (2) return normal parenchymal microanatomical structural support, known as alveolar interdependence and parenchymal tethering, as assessed by morphometric analysis of lung histology; (3) facilitate regeneration of normal surfactant function measured as increases in surfactant proteins A and B; and (4) significantly increase lung compliance, which reduces the pathologic impact of driving pressure and mechanical power at any given tidal volume.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA