Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
2.
Metabolites ; 13(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132854

RESUMO

Increased adiposity of both visceral and perivascular adipose tissue (PVAT) depots is associated with an increased risk of diabetes and cardiovascular disease (CVD). Under healthy conditions, PVAT modulates vascular tone via the release of PVAT-derived relaxing factors, including adiponectin and leptin. However, when PVAT expands with high-fat diet (HFD) feeding, it appears to contribute to the development of endothelial dysfunction (ED). Yet, the mechanisms by which PVAT alters vascular health are unclear. Aldose reductase (AR) catalyzes glucose reduction in the first step of the polyol pathway and has been long implicated in diabetic complications including neuropathy, retinopathy, nephropathy, and vascular diseases. To better understand the roles of both PVAT and AR in HFD-induced ED, we studied structural and functional changes in aortic PVAT induced by short-term HFD (60% kcal fat) feeding in wild type (WT) and aldose reductase-null (AR-null) mice. Although 4 weeks of HFD feeding significantly increased body fat and PVAT mass in both WT and AR-null mice, HFD feeding induced ED in the aortas of WT mice but not of AR-null mice. Moreover, HFD feeding augmented endothelial-dependent relaxation in aortas with intact PVAT only in WT and not in AR-null mice. These data indicate that AR mediates ED associated with short-term HFD feeding and that ED appears to provoke 'compensatory changes' in PVAT induced by HFD. As these data support that the ED of HFD feeding is AR-dependent, vascular-localized AR remains a potential target of temporally selective intervention.

3.
Toxicol Sci ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857595

RESUMO

Fine particulate matter (PM2.5) air pollution exposure increases the cardiovascular disease risk. Although the specific mechanisms remain elusive, it is thought that PM2.5-induced oxidative stress and endothelial dysfunction contribute to this pathogenesis. Our previous findings indicate that PM2.5 impairs vascular health via a circulating factor and that plasma lipid changes contribute to the observed vascular effects. In the current study, we extend on these findings by further characterizing PM2.5-induced changes in circulating lipids and examining whether the observed changes were accompanied by related alterations in the liver transcriptome. To address the role of pulmonary oxidative stress, we exposed wild-type (WT) mice and mice that overexpress extracellular superoxide dismutase (ecSOD-Tg) in the lungs to concentrated ambient PM2.5 (CAP, 9 days). We found that CAP decreased circulating complex lipids and increased free fatty acids and acylcarnitines in WT, but not ecSOD-Tg mice. These plasma lipid changes were accompanied by transcriptional changes in genes that regulate lipid metabolism (e.g., upregulation of lipid biosynthesis, downregulation of mitochondrial/peroxisomal FA metabolism) in the liver. The CAP-induced changes in lipid homeostasis and liver transcriptome were accompanied by pulmonary but not hepatic oxidative stress and were largely absent in ecSOD-Tg mice. Our results suggest that PM2.5 impacts hepatic lipid metabolism; however, it remains unclear whether the transcriptional changes in the liver contribute to PM2.5-induced changes in plasma lipids. Regardless, PM2.5-induced changes in the plasma lipidome and hepatic transcriptome are, at least in part, mediated by pulmonary oxidative stress.

4.
Sci Total Environ ; 877: 162934, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934930

RESUMO

Results of human and animal studies independently suggest that either ambient fine particulate matter (PM2.5) air pollution exposure or a disturbed circadian rhythm (circadian dyssynchrony) are important contributing factors to the rapidly evolving type-2-diabetes (T2D) epidemic. The objective of this study is to investigate whether circadian dyssynchrony increases the susceptibility to PM2.5 and how PM2.5 affects metabolic health in circadian dyssynchrony. We examined systemic and organ-specific changes in glucose homeostasis and insulin sensitivity in mice maintained on a regular (12/12 h light/dark) or disrupted (18/6 h light/dark, light-induced circadian dyssynchrony, LICD) light cycle exposed to air or concentrated PM2.5 (CAP, 6 h/day, 30 days). Exposures during Zeitgeber ZT3-9 or ZT11-17 (Zeitgeber in circadian time, ZT0 = begin of light cycle) tested for time-of-day PM2.5 sensitivity (chronotoxicity). Mice transgenic for lung-specific overexpression of extracellular superoxide dismutase (ecSOD-Tg) were used to assess the contribution of CAP-induced pulmonary oxidative stress. Both, CAP exposure from ZT3-9 or ZT11-17, decreased glucose tolerance and insulin sensitivity in male mice with LICD, but not in female mice or in mice kept on a regular light cycle. Although changes in glucose homeostasis in CAP-exposed male mice with LICD were not associated with obesity, they were accompanied by white adipose tissue (WAT) inflammation, impaired insulin signaling in skeletal muscle and liver, and systemic and pulmonary oxidative stress. Preventing CAP-induced oxidative stress in the lungs mitigated the CAP-induced decrease in glucose tolerance and insulin sensitivity in LICD. Our results demonstrate that circadian dyssynchrony is a novel susceptibility state for PM2.5 and suggest that PM2.5 by inducing pulmonary oxidative stress increases glucose intolerance and insulin resistance in circadian dyssynchrony.


Assuntos
Poluentes Atmosféricos , Intolerância à Glucose , Resistência à Insulina , Humanos , Masculino , Feminino , Camundongos , Animais , Material Particulado/toxicidade , Material Particulado/metabolismo , Intolerância à Glucose/induzido quimicamente , Pulmão , Estresse Oxidativo , Glucose/metabolismo , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 322(6): H973-H974, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35481792
6.
Genes (Basel) ; 12(7)2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356074

RESUMO

Exposure to fine particulate matter (PM2.5) air pollution is associated with quantitative deficits of circulating endothelial progenitor cells (EPCs) in humans. Related exposures of mice to concentrated ambient PM2.5 (CAP) likewise reduces levels of circulating EPCs and induces defects in their proliferation and angiogenic potential as well. These changes in EPC number or function are predictive of larger cardiovascular dysfunction. To identify global, PM2.5-dependent mRNA and miRNA expression changes that may contribute to these defects, we performed a transcriptomic analysis of cells isolated from exposed mice. Compared with control samples, we identified 122 upregulated genes and 44 downregulated genes in EPCs derived from CAP-exposed animals. Functions most impacted by these gene expression changes included regulation of cell movement, cell and tissue development, and cellular assembly and organization. With respect to miRNA changes, we found that 55 were upregulated while 53 were downregulated in EPCs from CAP-exposed mice. The top functions impacted by these miRNA changes included cell movement, cell death and survival, cellular development, and cell growth and proliferation. A subset of these mRNA and miRNA changes were confirmed by qRT-PCR, including some reciprocal relationships. These results suggest that PM2.5-induced changes in gene expression may contribute to EPC dysfunction and that such changes may contribute to the adverse cardiovascular outcomes of air pollution exposure.


Assuntos
Poluição do Ar/efeitos adversos , Medula Óssea/patologia , Células Progenitoras Endoteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Material Particulado/toxicidade , RNA Mensageiro/metabolismo , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Movimento Celular , Proliferação de Células , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética
7.
Physiol Rep ; 9(15): e14980, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34327871

RESUMO

Exposure to fine particulate matter (PM2.5 ) air pollution increases blood pressure, induces vascular inflammation and dysfunction, and augments atherosclerosis in humans and rodents; however, the understanding of early changes that foster chronic vascular disease is incomplete. Because perivascular adipose tissue (PVAT) inflammation is implicated in chronic vascular diseases, we investigated changes in aortic PVAT following short-term air pollution exposure. Mice were exposed to HEPA-filtered or concentrated ambient PM2.5 (CAP) for 9 consecutive days, and the abundance of inflammatory, adipogenic, and adipokine gene mRNAs was measured by gene array and qRT-PCR in thoracic aortic PVAT. Responses of the isolated aorta with and without PVAT to contractile (phenylephrine, PE) and relaxant agonists (acetylcholine, ACh; sodium nitroprusside, SNP) were measured. Exposure to CAP significantly increased the urinary excretion of acrolein metabolite (3HPMA) as well as the abundance of protein-acrolein adducts (a marker of oxidative stress) in PVAT and aorta, upregulated PVAT leptin mRNA expression without changing mRNA levels of several proinflammatory genes, and induced PVAT insulin resistance. In control mice, PVAT significantly depressed PE-induced contractions-an effect that was dampened by CAP exposure. Pulmonary overexpression of extracellular dismutase (ecSOD-Tg) prevented CAP-induced effects on urinary 3HPMA levels, PVAT Lep mRNA, and alterations in PVAT and aortic function, reflecting a necessary role of pulmonary oxidative stress in all of these deleterious CAP-induced changes. More research is needed to address how exactly short-term exposure to PM2.5 perturbs PVAT and aortic function, and how these specific genes and functional changes in PVAT could lead over time to chronic inflammation, endothelial dysfunction, and atherosclerosis.


Assuntos
Tecido Adiposo/patologia , Poluição do Ar/efeitos adversos , Doenças da Aorta/patologia , Aterosclerose/patologia , Leptina/metabolismo , Estresse Oxidativo , Material Particulado/toxicidade , Tecido Adiposo/metabolismo , Animais , Doenças da Aorta/etiologia , Doenças da Aorta/metabolismo , Aterosclerose/etiologia , Aterosclerose/metabolismo , Dieta Hiperlipídica , Regulação da Expressão Gênica , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina , Leptina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 320(5): H1836-H1850, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33666505

RESUMO

Fine particulate matter (PM2.5) air pollution exposure increases the risk of developing cardiovascular disease (CVD). Although the precise mechanisms by which air pollution exposure increases CVD risk remain uncertain, research indicates that PM2.5-induced endothelial dysfunction contributes to CVD risk. Previous studies demonstrate that concentrated ambient PM2.5 (CAP) exposure induces vascular inflammation and impairs insulin and vascular endothelial growth factor (VEGF) signaling dependent on pulmonary oxidative stress. To assess whether CAP exposure induces these vascular effects via plasmatic factors, we incubated aortas from naïve mice with plasma isolated from mice exposed to HEPA-filtered air or CAP (9 days) and examined vascular inflammation and insulin and VEGF signaling. We found that treatment of naïve aortas with plasma from CAP-exposed mice activates NF-κBα and induces insulin and VEGF resistance, indicating transmission by plasmatic factor(s). To identify putative factors, we exposed lung-specific ecSOD-transgenic (ecSOD-Tg) mice and wild-type (WT) littermates to CAP at concentrations of either ∼60 µg/m3 (CAP60) or ∼100 µg/m3 (CAP100) and measured the abundance of plasma metabolites by mass spectrometry. In WT mice, both CAP concentrations increased levels of fatty acids such as palmitate, myristate, and palmitoleate and decreased numerous phospholipid species; however, these CAP-induced changes in the plasma lipidome were prevented in ecSOD-Tg mice. Consistent with the literature, we found that fatty acids such as palmitate are sufficient to promote endothelial inflammation. Collectively, our findings suggest that PM2.5 exposure, by inducing pulmonary oxidative stress, promotes unique lipidomic changes characterized by high levels of circulating fatty acids, which are sufficient to trigger vascular pathology.NEW & NOTEWORTHY We found that circulating plasma constituents are responsible for air pollution-induced vascular pathologies. Inhalation of fine particulate matter (≤PM2.5) promotes a unique form of dyslipidemia that manifests in a manner dependent upon pulmonary oxidative stress. The air pollution-engendered dyslipidemic phenotype is characterized by elevated free fatty acid species and diminished phospholipid species, which could contribute to vascular inflammation and loss of insulin sensitivity.


Assuntos
Poluentes Atmosféricos/toxicidade , Aorta/efeitos dos fármacos , Aortite/induzido quimicamente , Dislipidemias/induzido quimicamente , Resistência à Insulina , Lipídeos/sangue , Metaboloma , Material Particulado/toxicidade , Animais , Aorta/metabolismo , Aorta/patologia , Aortite/sangue , Aortite/patologia , Biomarcadores/sangue , Células Cultivadas , Dislipidemias/sangue , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Exposição por Inalação , Insulina/sangue , Lipidômica , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Técnicas de Cultura de Tecidos , Fator A de Crescimento do Endotélio Vascular/sangue
9.
Am J Physiol Heart Circ Physiol ; 320(4): H1440-H1455, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33606580

RESUMO

Environmental air pollution exposure is a leading cause of death worldwide, and with increasing industrialization and urbanization, its disease burden is expected to rise even further. The majority of air pollution exposure-associated deaths are linked to cardiovascular disease (CVD). Although ample research demonstrates a strong correlation between air pollution exposure and CVD risk, the mechanisms by which inhalation of polluted air affects cardiovascular health are not completely understood. Inhalation of environmental air pollution has been associated with endothelial dysfunction, which suggests that air pollution exposure impacts CVD health by inducing endothelial injury. Interestingly, recent studies demonstrate that air pollution exposure affects the number and function of endothelial progenitor cells (EPCs), subpopulations of bone marrow-derived proangiogenic cells that have been shown to play an essential role in maintaining cardiovascular health. In line with their beneficial function, chronically low levels of circulating EPCs and EPC dysfunction (e.g., in diabetic patients) have been associated with vascular dysfunction, poor cardiovascular health, and increases in the severity of cardiovascular outcomes. In contrast, treatments that improve EPC number and function (e.g., exercise) have been found to attenuate cardiovascular dysfunction. Considering the critical, nonredundant role of EPCs in maintaining vascular health, air pollution exposure-induced impairments in EPC number and function could lead to endothelial dysfunction, consequently increasing the risk for CVD. This review article covers novel aspects and new mechanistic insights of the adverse effects of air pollution exposure on cardiovascular health associated with changes in EPC number and function.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Sistema Cardiovascular/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Humanos , Fenótipo , Medição de Risco , Fatores de Risco , Transdução de Sinais
10.
J Am Heart Assoc ; 8(13): e013041, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31234700

RESUMO

Background Exposure to fine airborne particulate matter ( PM 2.5) induces quantitative and qualitative defects in bone marrow-derived endothelial progenitor cells of mice, and similar outcomes in humans may contribute to vascular dysfunction and the cardiovascular morbidity and mortality associated with PM 2.5 exposure. Nevertheless, mechanisms underlying the pervasive effects of PM 2.5 are unclear and effective interventional strategies to mitigate against PM 2.5 toxicity are lacking. Furthermore, whether PM 2.5 exposure affects other types of bone marrow stem cells leading to additional hematological or immunological dysfunction is not clear. Methods and Results Mice given normal drinking water or that supplemented with carnosine, a naturally occurring, nucleophilic di-peptide that binds reactive aldehydes, were exposed to filtered air or concentrated ambient particles. Mice drinking normal water and exposed to concentrated ambient particles demonstrated a depletion of bone marrow hematopoietic stem cells but no change in mesenchymal stem cells. However, HSC depletion was significantly attenuated when the mice were placed on drinking water containing carnosine. Carnosine supplementation also increased the levels of carnosine-propanal conjugates in the urine of CAPs-exposed mice and prevented the concentrated ambient particles-induced dysfunction of endothelial progenitor cells as assessed by in vitro and in vivo assays. Conclusions These results suggest that exposure to PM 2.5 has pervasive effects on different bone marrow stem cell populations and that PM 2.5-induced hematopoietic stem cells depletion, endothelial progenitor cell dysfunction, and defects in vascular repair can be mitigated by excess carnosine. Carnosine supplementation may be a viable approach for preventing PM 2.5-induced immune dysfunction and cardiovascular injury in humans.


Assuntos
Carnosina/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Material Particulado/intoxicação , Animais , Ensaio de Unidades Formadoras de Colônias , Membro Posterior , Técnicas In Vitro , Isquemia , Fluxometria por Laser-Doppler , Masculino , Camundongos
11.
Am J Physiol Endocrinol Metab ; 315(5): E1005-E1018, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153066

RESUMO

Hepatic glutathione S-transferases (GSTs) are dysregulated in human obesity, nonalcoholic fatty liver disease, and diabetes. The multifunctional GST pi-isoform (GSTP) catalyzes the conjugation of glutathione with acrolein and inhibits c-Jun NH2-terminal kinase (JNK) activation. Herein, we tested whether GSTP deficiency disturbs glucose homeostasis in mice. Hepatic GST proteins were downregulated by short-term high-fat diet in wild-type (WT) mice concomitant with increased glucose intolerance, JNK activation, and cytokine mRNAs in the liver. Genetic deletion of GSTP did not affect body composition, fasting blood glucose levels, or insulin levels in mice maintained on a normal chow diet; however, compared with WT mice, the GSTP-null mice were glucose intolerant. In GSTP-null mice, pyruvate intolerance, reflecting increased hepatic gluconeogenesis, was accompanied by elevated levels of activated JNK, cytokine mRNAs, and glucose-6-phosphatase proteins in the liver. Treatment of GSTP-null mice with the JNK inhibitor 1,9-pyrazoloanthrone (SP600125) significantly attenuated pyruvate-induced hepatic gluconeogenesis and significantly altered correlations between hepatic cytokine mRNAs and metabolic outcomes in GSTP-null mice. Collectively, these findings suggest that hepatic GSTP plays a pivotal role in glucose handling by regulating JNK-dependent control of hepatic gluconeogenesis. Thus, hepatic GSTP-JNK dysregulation may be a target of new therapeutic interventions during early stages of glucose intolerance to prevent the worsening metabolic derangements associated with human obesity and its relentless progression to diabetes.


Assuntos
Gluconeogênese/fisiologia , Intolerância à Glucose/metabolismo , Glutationa Transferase/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Animais , Antracenos/farmacologia , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Gluconeogênese/efeitos dos fármacos , Intolerância à Glucose/genética , Glutationa Transferase/genética , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Fígado/efeitos dos fármacos , Camundongos , Camundongos Knockout
12.
Curr Opin Physiol ; 5: 16-24, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30931418

RESUMO

Exposures to environmental stressors that derive from pollution (e.g. air, light) or lifestyle choices (e.g. diet, activity, 24-hour-×-7-day) are associated with adverse human health outcomes. For instance, there is evidence that air pollution exposure and changes in sleep/wake pattern increase the risk for vascular and cardiometabolic disorders. Interestingly, air pollution exposure affects pulmonary and cardiovascular functions that follow circadian rhythmicity and increases the risk for pulmonary and cardiovascular events that occur in diurnal patterns suggesting a link between air pollution induced cardiovascular and pulmonary injury and changes in circadian rhythm. Indeed, recent research identified circadian rhythm as an air pollution target and circadian rhythm as factor that increases air pollution sensitivity. Using air pollution exposure as precedent, this review highlights research on how environmental pollution affect circadian rhythm and how circadian rhythm affects the toxicity of environmental stressors.

13.
Arterioscler Thromb Vasc Biol ; 38(1): 131-142, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191925

RESUMO

OBJECTIVE: Exposure to fine particulate matter (PM2.5) air pollution is associated with the depletion of circulating endothelial progenitor cells (EPCs), as well as vascular injury and dysfunction. Nevertheless, it remains unclear whether PM2.5 exposure leads to significant impairments in EPC function. Hence, we studied the effects of PM2.5 on EPC-mediated recovery of vascular perfusion after hindlimb ischemia and examined the mechanisms whereby PM2.5 exposure affects EPC abundance and function. APPROACH AND RESULTS: In comparison with EPCs isolated from mice breathing filtered air, EPCs from mice exposed for 9 consecutive days (6 hours per day) to concentrated ambient PM2.5 (CAP) had defects in both proliferation and tube formation. However, CAP exposure of mice overexpressing extracellular superoxide dismutase (ecSOD-Tg) in the lungs did not affect EPC tube formation. Exposure to CAP also suppressed circulating EPC levels, VEGF (vascular endothelial growth factor)-stimulated aortic Akt phosphorylation, and plasma NO levels in wild-type but not in ecSOD-Tg mice. EPCs from CAP-exposed wild-type mice failed to augment basal recovery of hindlimb perfusion when injected into unexposed mice subjected to hindlimb ischemia; however, these deficits in recovery of hindlimb perfusion were absent when using EPCs derived from CAP-exposed ecSOD-Tg mice. The improved reparative function of EPCs from CAP-exposed ecSOD-Tg mice was also reflected by greater expression of Mmp-9 and Nos3 when compared with EPCs from CAP-exposed wild-type mice. CONCLUSIONS: Exposure to PM2.5 impairs EPC abundance and function and prevents EPC-mediated vascular recovery after hindlimb ischemia. This defect is attributed, in part, to pulmonary oxidative stress and was associated with vascular VEGF resistance and a decrement in NO bioavailability.


Assuntos
Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/transplante , Exposição por Inalação/efeitos adversos , Isquemia/cirurgia , Pulmão/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Membro Posterior , Isquemia/metabolismo , Isquemia/patologia , Isquemia/fisiopatologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Tamanho da Partícula , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
14.
Toxicol Sci ; 158(2): 263-274, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482051

RESUMO

Exposure to tobacco smoke, which contains several harmful and potentially harmful constituents such as acrolein increases cardiovascular disease (CVD) risk. Although high acrolein levels induce pervasive cardiovascular injury, the effects of low-level exposure remain unknown and sensitive biomarkers of acrolein toxicity have not been identified. Identification of such biomarkers is essential to assess the toxicity of acrolein present at low levels in the ambient air or in new tobacco products such as e-cigarettes. Hence, we examined the systemic effects of chronic (12 weeks) acrolein exposure at concentrations similar to those found in tobacco smoke (0.5 or 1 ppm). Acrolein exposure in mice led to a 2- to 3-fold increase in its urinary metabolite 3-hydroxypropyl mercapturic acid (3-HPMA) with an attendant increase in pulmonary levels of the acrolein-metabolizing enzymes, glutathione S-transferase P and aldose reductase, as well as several Nrf2-regulated antioxidant proteins. Markers of pulmonary endoplasmic reticulum stress and inflammation were unchanged. Exposure to acrolein suppressed circulating levels of endothelial progenitor cells (EPCs) and specific leukocyte subsets (eg, GR-1+ cells, CD19+ B-cells, CD4+ T-cells; CD11b+ monocytes) whilst other subsets (eg, CD8+ cells, NK1.1+ cells, Ly6C+ monocytes) were unchanged. Chronic acrolein exposure did not affect systemic glucose tolerance, platelet-leukocyte aggregates or microparticles in blood. These findings suggest that circulating levels of EPCs and specific leukocyte populations are sensitive biomarkers of inhaled acrolein injury and that low-level (<0.5 ppm) acrolein exposure (eg, in secondhand smoke, vehicle exhaust, e-cigarettes) could increase CVD risk by diminishing endothelium repair or by suppressing immune cells or both.


Assuntos
Acroleína/administração & dosagem , Biomarcadores/metabolismo , Exposição por Inalação , Nicotiana/química , Acroleína/metabolismo , Acroleína/toxicidade , Acroleína/urina , Animais , Estresse do Retículo Endoplasmático , Células Endoteliais/metabolismo , Resistência à Insulina , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fumaça
15.
Toxicol Appl Pharmacol ; 324: 61-72, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27592100

RESUMO

Acrolein is a highly toxic, volatile, unsaturated aldehyde generated during incomplete combustion as in tobacco smoke and indoor fires. Because the transient receptor potential ankyrin 1 (TRPA1) channel mediates tobacco smoke-induced lung injury, we assessed its role in high-level acrolein-induced toxicity in mice. Acrolein (100-275ppm, 10-30min) caused upper airway epithelial sloughing, bradypnea and oral gasping, hypothermia, cardiac depression and mortality. Male wild-type mice (WT, C57BL/6; 5-52weeks) were significantly more sensitive to high-level acrolein than age-matched, female WT mice. Both male and female TRPA1-null mice were more sensitive to acrolein-induced mortality than age- and sex-matched WT mice. Acrolein exposure increased lung weight:body weight ratios and lung albumin and decreased plasma albumin to a greater extent in TRPA1-null than in WT mice. Lung and plasma protein-acrolein adducts were not increased in acrolein-exposed TRPA1-null mice compared with WT mice. To assess TRPA1-dependent protective mechanisms, respiratory parameters were monitored by telemetry. TRPA1-null mice had a slower onset of breathing rate suppression ('respiratory braking') than WT mice suggesting TRPA1 mediates this protective response. Surprisingly, WT male mice treated either with a TRPA1 antagonist (HC030031; 200mg/kg) alone or with combined TRPA1 (100mg/kg) and TRPV1 (capsazepine, 10mg/kg) antagonists at 30min post-acrolein exposure (i.e., "real world" delay in treatment) were significantly protected from acrolein-induced mortality. These data show TRPA1 protects against high-level acrolein-induced toxicity in a sex-dependent manner. Post-exposure TRPA1 antagonism also protected against acrolein-induced mortality attesting to a complex role of TRPA1 in cardiopulmonary injury.


Assuntos
Acroleína/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/fisiologia , Acroleína/administração & dosagem , Animais , Feminino , Pulmão/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Fatores Sexuais , Canal de Cátion TRPA1
16.
J Biol Chem ; 291(26): 13634-48, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27151219

RESUMO

Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glicólise , Mioblastos Cardíacos/metabolismo , Fosfofrutoquinase-2/biossíntese , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Regulação Enzimológica da Expressão Gênica , Glucose/genética , Masculino , Camundongos , Mioblastos Cardíacos/patologia , Fosfofrutoquinase-2/genética , Regulação para Cima
17.
Environ Health Perspect ; 124(12): 1830-1839, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27128347

RESUMO

BACKGROUND: Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. OBJECTIVES: We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. METHODS: Mice fed control (10-13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. RESULTS: In control diet-fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet-fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. CONCLUSIONS: Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O'Toole TE, Bhatnagar A, Conklin DJ. 2016. Exposure to fine particulate air pollution causes vascular insulin resistance by inducing pulmonary oxidative stress. Environ Health Perspect 124:1830-1839; http://dx.doi.org/10.1289/EHP212.


Assuntos
Poluentes Atmosféricos/toxicidade , Resistência à Insulina , Material Particulado/toxicidade , Animais , Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Sequestradores de Radicais Livres/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Marcadores de Spin , Superóxido Dismutase/metabolismo
18.
Am J Physiol Heart Circ Physiol ; 310(11): H1423-38, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016579

RESUMO

Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1ß and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution.


Assuntos
Aorta/efeitos dos fármacos , Células Progenitoras Endoteliais/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Resistência à Insulina , Insulina/farmacologia , Metformina/farmacologia , Material Particulado/toxicidade , Tiazolidinedionas/farmacologia , Animais , Aorta/metabolismo , Ataxina-1/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Dieta Hiperlipídica , Células Progenitoras Endoteliais/metabolismo , Homeostase , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Exposição por Inalação/efeitos adversos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rosiglitazona , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Circ Res ; 117(5): 437-49, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26169370

RESUMO

RATIONALE: Myocardial ischemia-reperfusion (I/R) results in the generation of oxygen-derived free radicals and the accumulation of lipid peroxidation-derived unsaturated aldehydes. However, the contribution of aldehydes to myocardial I/R injury has not been assessed. OBJECTIVE: We tested the hypothesis that removal of aldehydes by glutathione S-transferase P (GSTP) diminishes I/R injury. METHODS AND RESULTS: In adult male C57BL/6 mouse hearts, Gstp1/2 was the most abundant GST transcript followed by Gsta4 and Gstm4.1, and GSTP activity was a significant fraction of the total GST activity. mGstp1/2 deletion reduced total GST activity, but no compensatory increase in GSTA and GSTM or major antioxidant enzymes was observed. Genetic deficiency of GSTP did not alter cardiac function, but in comparison with hearts from wild-type mice, the hearts isolated from GSTP-null mice were more sensitive to I/R injury. Disruption of the GSTP gene also increased infarct size after coronary occlusion in situ. Ischemia significantly increased acrolein in hearts, and GSTP deficiency induced significant deficits in the metabolism of the unsaturated aldehyde, acrolein, but not in the metabolism of 4-hydroxy-trans-2-nonenal or trans-2-hexanal; on ischemia, the GSTP-null hearts accumulated more acrolein-modified proteins than wild-type hearts. GSTP deficiency did not affect I/R-induced free radical generation, c-Jun N-terminal kinase activation, or depletion of reduced glutathione. Acrolein exposure induced a hyperpolarizing shift in INa, and acrolein-induced cell death was delayed by SN-6, a Na(+)/Ca(++) exchange inhibitor. Cardiomyocytes isolated from GSTP-null hearts were more sensitive than wild-type myocytes to acrolein-induced protein crosslinking and cell death. CONCLUSIONS: GSTP protects the heart from I/R injury by facilitating the detoxification of cytotoxic aldehydes, such as acrolein.


Assuntos
Glutationa Transferase/deficiência , Glutationa Transferase/genética , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia
20.
Toxicol Appl Pharmacol ; 285(2): 136-48, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25868843

RESUMO

High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100-300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK · MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null than WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein-acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1-5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10-20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity.


Assuntos
Antineoplásicos Alquilantes/toxicidade , Ciclofosfamida/toxicidade , Glutationa Transferase/genética , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Acroleína/toxicidade , Animais , Pressão Sanguínea/efeitos dos fármacos , Ecocardiografia , Glutationa Transferase/metabolismo , Glutationa Transferase/fisiologia , Cardiopatias/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miocárdio/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA