RESUMO
The aging process is a complex phenomenon characterised by a gradual decline in physiological functions and an increased susceptibility to age-related diseases. An important factor in aging is mitochondrial dysfunction, which leads to an accumulation of cellular damage over time. Mitochondrial Sirtuin 3 (Sirt3), an important regulator of energy metabolism, plays a central role in maintaining mitochondrial function. Loss of Sirt3 can lead to reduced energy levels and an impaired ability to repair cellular damage, a hallmark of the aging process. In this study we investigated the impact of Sirt3 loss on mitochondrial function, metabolic responses and cellular aging processes in male and female mouse embryonic fibroblasts (MEF) exposed to etoposide-induced DNA damage, which is commonly associated with cellular dysfunction and senescence. We found that Sirt3 contributes to the sex-specific metabolic response to etoposide treatment. While male MEF exhibited minimal damage suggesting potential prior adaptation to stress due to Sirt3 loss, female MEF lacking Sirt3 experienced higher vulnerability to genotoxic stress, implying a pivotal role of Sirt3 in their resistance to such challenges. These findings offer potential insights into therapeutic strategies targeting Sirt3- and sex-specific signalling pathways in diseases associated with DNA damage that play a critical role in the aging process.
RESUMO
Background and Aims: Recent studies showed that patients suffering from lysosomal acid lipase deficiency (LAL-D) benefit from enzyme replacement therapy; however, liver histopathology improved in some but not all patients. We hypothesized that the pan-peroxisome proliferator-activated receptor agonist lanifibranor may have beneficial effects on liver inflammation in LAL knockout (Lal-/-) mice based on its promising results in alleviating liver inflammation in patients with metabolic dysfunction-associated steatohepatitis. Methods: Female Lal-/- mice were daily gavaged with lanifibranor or vehicle for 21 days. The effects of the treatment were assessed by measuring body and organ weights, plasma lipids and lipoproteins, as well as hematological parameters, followed by liver proteomics and metabolomics. Results: Lanifibranor treatment slightly altered organ weights without affecting the total body weight of Lal-/- mice. We observed major changes in the proteome, with multiple proteins related to lipid metabolism, peroxisomal, and mitochondrial activities being upregulated and inflammation-related proteins being downregulated in the livers of treated mice. Hepatic lipid levels and histology remained unaltered, whereas plasma triacylglycerol and total cholesterol levels were decreased and the lipoprotein profile of lanifibranor-treated Lal-/- mice improved. Conclusion: Lanifibranor treatment positively affected liver inflammation and dyslipidemia in Lal-/- mice. These findings suggest the necessity of a further combined study of lanifibranor with enzyme replacement therapy in Lal-/- mice to improve the phenotype. Moreover, there is a compelling rationale for conducting clinical trials to assess the efficacy of lanifibranor as a potential treatment option for LAL-D in humans.
RESUMO
AIMS: Acute heart failure (AHF) is typified by inflammatory and oxidative stress responses, which are associated with unfavorable patient outcomes. Given the anti-inflammatory and antioxidant properties of high-density lipoprotein (HDL), this study sought to examine the relationship between impaired HDL function and mortality in AHF patients. The complex interplay between various HDL-related biomarkers and clinical outcomes remains poorly understood. METHODS: HDL subclass distribution was quantified by nuclear magnetic resonance spectroscopy. Lecithin-cholesterol acyltransferase (LCAT) activity, cholesterol ester transfer protein (CETP) activity, and paraoxonase (PON-1) activity were assessed using fluorometric assays. HDL-cholesterol efflux capacity (CEC) was assessed in a validated assay using [3H]-cholesterol-labeled J774 macrophages. RESULTS: Among the study participants, 74 (23.5 %) out of 315 died within three months after hospitalization due to AHF. These patients exhibited lower activities of the anti-oxidant enzymes PON1 and LCAT, impaired CEC, and lower concentration of small HDL subclasses, which remained significant after accounting for potential confounding factors. Smaller HDL particles, particularly HDL3 and HDL4, exhibited a strong association with CEC, PON1 activity, and LCAT activity. CONCLUSIONS: In patients with AHF, impaired HDL CEC, HDL antioxidant and anti-inflammatory function, and impaired HDL metabolism are associated with increased mortality. Assessment of HDL function and subclass distribution could provide valuable clinical information and help identify patients at high risk.
Assuntos
Antioxidantes , Arildialquilfosfatase , Biomarcadores , Insuficiência Cardíaca , Lipoproteínas HDL , Fosfatidilcolina-Esterol O-Aciltransferase , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/sangue , Humanos , Masculino , Lipoproteínas HDL/sangue , Lipoproteínas HDL/metabolismo , Idoso , Feminino , Antioxidantes/metabolismo , Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/sangue , Biomarcadores/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Estresse Oxidativo , Pessoa de Meia-Idade , Doença Aguda , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/sangueRESUMO
The strong associations between the serum levels of adiponectin and the lipoprotein subclasses observed in healthy subjects are much weaker in patients with metabolic syndrome (MS). However, the impact of sex on these associations remained unexplored. Therefore, in the present study, we examined associations between adiponectin and the lipoprotein subclasses, analyzed by nuclear magnetic resonance spectroscopy, separately in healthy females and males, as well as in females and males with MS. We observed negative correlations between adiponectin and VLDL, IDL, and small-dense LDL in healthy males, but neither in healthy females nor in females or males with MS. Additionally, adiponectin was positively correlated with some HDL subclasses in healthy males and females with MS, but not in healthy females or males with MS. Adjusting for age and either body mass index, waist circumference, C-reactive protein, or interleukin-6 weakened the associations between adiponectin and VLDL and IDL but not small-dense LDL. The adjustment weakened the associations between adiponectin and HDL in healthy males but not in females with MS. Based on our results, we conclude that sex and the presence of MS are strong determinants of the associations between adiponectin and serum lipoproteins and that the complex regulatory network comprising adiponectin and other molecular players involved in the regulation of lipoprotein metabolism is primarily operative in healthy males and females with MS.
RESUMO
BACKGROUND: Cardiovascular disease represents a significant risk factor for mortality in individuals with type 2 diabetes mellitus (T2DM). High-density lipoprotein (HDL) is believed to play a crucial role in maintaining cardiovascular health through its multifaceted atheroprotective effects and its capacity to enhance glycemic control. The impact of dietary interventions and intermittent fasting (IF) on HDL functionality remains uncertain. The objective of this study was to assess the effects of dietary interventions and IF as a strategy to safely improve glycemic control and reduce body weight on functional parameters of HDL in individuals with T2DM. METHODS: Before the 12-week intervention, all participants (n = 41) of the INTERFAST-2 study were standardized to a uniform basal insulin regimen and randomized to an IF or non-IF group. Additionally, all participants were advised to adhere to dietary recommendations that promoted healthy eating patterns. The IF group (n = 19) followed an alternate-day fasting routine, reducing their calorie intake by 75% on fasting days. The participants' glucose levels were continuously monitored. Other parameters were measured following the intervention: Lipoprotein composition and subclass distribution were measured by nuclear magnetic resonance spectroscopy. HDL cholesterol efflux capacity, paraoxonase 1 (PON1) activity, lecithin cholesterol acyltransferase (LCAT) activity, and cholesterol ester transfer protein (CETP) activity were assessed using cell-based assays and commercially available kits. Apolipoprotein M (apoM) levels were determined by ELISA. RESULTS: Following the 12-week intervention, the IF regimen significantly elevated serum apoM levels (p = 0.0144), whereas no increase was observed in the non-IF group (p = 0.9801). ApoM levels correlated with weight loss and fasting glucose levels in the IF group. Both groups exhibited a robust enhancement in HDL cholesterol efflux capacity (p < 0.0001, p = 0.0006) after 12 weeks. Notably, only the non-IF group exhibited significantly elevated activity of PON1 (p = 0.0455) and LCAT (p = 0.0117) following the 12-week intervention. In contrast, the changes observed in the IF group did not reach statistical significance. CONCLUSIONS: A balanced diet combined with meticulous insulin management improves multiple metrics of HDL function. While additional IF increases apoM levels, it does not further enhance other aspects of HDL functionality. TRIAL REGISTRATION: The study was registered at the German Clinical Trial Register (DRKS) on 3 September 2019 under the number DRKS00018070.
Assuntos
Biomarcadores , Glicemia , Diabetes Mellitus Tipo 2 , Jejum , Obesidade , Fosfatidilcolina-Esterol O-Aciltransferase , Humanos , Masculino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Jejum/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Resultado do Tratamento , Obesidade/sangue , Obesidade/diagnóstico , Obesidade/dietoterapia , Obesidade/fisiopatologia , Obesidade/terapia , Glicemia/metabolismo , Fatores de Tempo , Biomarcadores/sangue , Restrição Calórica , Arildialquilfosfatase/sangue , HDL-Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/sangue , Redução de Peso , Idoso , Adulto , Dieta Saudável , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Jejum IntermitenteRESUMO
Caloric restriction and intermittent fasting prolong the lifespan and healthspan of model organisms and improve human health. The natural polyamine spermidine has been similarly linked to autophagy enhancement, geroprotection and reduced incidence of cardiovascular and neurodegenerative diseases across species borders. Here, we asked whether the cellular and physiological consequences of caloric restriction and fasting depend on polyamine metabolism. We report that spermidine levels increased upon distinct regimens of fasting or caloric restriction in yeast, flies, mice and human volunteers. Genetic or pharmacological blockade of endogenous spermidine synthesis reduced fasting-induced autophagy in yeast, nematodes and human cells. Furthermore, perturbing the polyamine pathway in vivo abrogated the lifespan- and healthspan-extending effects, as well as the cardioprotective and anti-arthritic consequences of fasting. Mechanistically, spermidine mediated these effects via autophagy induction and hypusination of the translation regulator eIF5A. In summary, the polyamine-hypusination axis emerges as a phylogenetically conserved metabolic control hub for fasting-mediated autophagy enhancement and longevity.
Assuntos
Autofagia , Caenorhabditis elegans , Restrição Calórica , Jejum , Longevidade , Espermidina , Autofagia/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Espermidina/metabolismo , Espermidina/farmacologia , Animais , Humanos , Caenorhabditis elegans/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fator de Iniciação de Tradução Eucariótico 5A , Drosophila melanogaster/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BLRESUMO
Chronic kidney disease (CKD) is often associated with decreased activity of lecithin-cholesterol acyltransferase (LCAT), an enzyme essential for HDL maturation. This reduction in LCAT activity may potentially contribute to an increased risk of cardiovascular mortality in patients with CKD. The objective of this study was to investigate the association between LCAT activity in patients with CKD and the risk of adverse outcomes. We measured serum LCAT activity and characterized lipoprotein profiles using nuclear magnetic resonance spectroscopy in 453 non-dialysis CKD patients from the CARE FOR HOMe study. LCAT activity correlated directly with smaller HDL particle size, a type of HDL potentially linked to greater cardiovascular protection. Over a mean follow-up of 5.0 ± 2.2 years, baseline LCAT activity was inversely associated with risk of death (standardized HR 0.62, 95% CI 0.50-0.76; P < 0.001) and acute decompensated heart failure (ADHF) (standardized HR 0.67, 95% CI 0.52-0.85; P = 0.001). These associations remained significant even after adjusting for other risk factors. Interestingly, LCAT activity was not associated with the incidence of atherosclerotic cardiovascular events or kidney function decline during the follow-up. To conclude, our findings demonstrate that low LCAT activity is independently associated with all-cause mortality and ADHF in patients with CKD, and is directly linked to smaller, potentially more protective HDL subclasses.
Assuntos
Insuficiência Cardíaca , Fosfatidilcolina-Esterol O-Aciltransferase , Insuficiência Renal Crônica , Humanos , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Masculino , Feminino , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/sangue , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/complicações , Idoso , Pessoa de Meia-Idade , Doença Aguda , Fatores de RiscoRESUMO
Atherosclerosis, the leading cause of cardiovascular disease, cannot be sufficiently explained by established risk factors, including cholesterol. Elevated plasma homocysteine (Hcy) is an independent risk factor for atherosclerosis and is closely linked to cardiovascular mortality. However, its role in atherosclerosis has not been fully clarified yet. We have previously shown that rabbits fed a diet deficient in B vitamins and choline (VCDD), which are required for Hcy degradation, exhibit an accumulation of macrophages and lipids in the aorta, aortic stiffening and disorganization of aortic collagen in the absence of hypercholesterolemia, and an aggravation of atherosclerosis in its presence. In the current study, plasma Hcy levels were increased by intravenous injections of Hcy into balloon-injured rabbits fed VCDD (VCDD+Hcy) in the absence of hypercholesterolemia. While this treatment did not lead to thickening of aortic wall, intravenous injections of Hcy into rabbits fed VCDD led to massive accumulation of VLDL-triglycerides as well as significant impairment of vascular reactivity of the aorta compared to VCDD alone. In the aorta intravenous Hcy injections into VCDD-fed rabbits led to fragmentation of aortic elastin, accumulation of elastin-specific electron-dense inclusions, collagen disorganization, lipid degradation, and autophagolysosome formation. Furthermore, rabbits from the VCDD+Hcy group exhibited a massive decrease of total protein methylated arginine in blood cells and decreased creatine in blood cells, serum and liver compared to rabbits from the VCDD group. Altogether, we conclude that Hcy contributes to atherogenic transformation of the aorta not only in the presence but also in the absence of hypercholesterolemia.
Assuntos
Aorta , Aterosclerose , Homocisteína , Hipercolesterolemia , Animais , Coelhos , Aterosclerose/patologia , Aterosclerose/metabolismo , Homocisteína/sangue , Aorta/patologia , Aorta/metabolismo , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Masculino , Colina/administração & dosagem , Modelos Animais de Doenças , Elastina/metabolismo , Complexo Vitamínico B/administração & dosagem , Complexo Vitamínico B/farmacologiaRESUMO
BACKGROUND: Metabolic syndrome (MetS) is a cluster of medical conditions and risk factors correlating with insulin resistance that increase the risk of developing cardiometabolic health problems. The specific criteria for diagnosing MetS vary among different medical organizations but are typically based on the evaluation of abdominal obesity, high blood pressure, hyperglycemia, and dyslipidemia. A unique, quantitative and independent estimation of the risk of MetS based only on quantitative biomarkers is highly desirable for the comparison between patients and to study the individual progression of the disease in a quantitative manner. METHODS: We used NMR-based metabolomics on a large cohort of donors (n = 21,323; 37.5% female) to investigate the diagnostic value of serum or serum combined with urine to estimate the MetS risk. Specifically, we have determined 41 circulating metabolites and 112 lipoprotein classes and subclasses in serum samples and this information has been integrated with metabolic profiles extracted from urine samples. RESULTS: We have developed MetSCORE, a metabolic model of MetS that combines serum lipoprotein and metabolite information. MetSCORE discriminate patients with MetS (independently identified using the WHO criterium) from general population, with an AUROC of 0.94 (95% CI 0.920-0.952, p < 0.001). MetSCORE is also able to discriminate the intermediate phenotypes, identifying the early risk of MetS in a quantitative way and ranking individuals according to their risk of undergoing MetS (for general population) or according to the severity of the syndrome (for MetS patients). CONCLUSIONS: We believe that MetSCORE may be an insightful tool for early intervention and lifestyle modifications, potentially preventing the aggravation of metabolic syndrome.
Assuntos
Biomarcadores , Espectroscopia de Ressonância Magnética , Síndrome Metabólica , Metabolômica , Valor Preditivo dos Testes , Humanos , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/urina , Feminino , Masculino , Biomarcadores/sangue , Biomarcadores/urina , Pessoa de Meia-Idade , Medição de Risco , Adulto , Idoso , Lipoproteínas/sangue , Prognóstico , Fatores de Risco , Fatores de Risco Cardiometabólico , Adulto JovemRESUMO
Metabolic enzymes can adapt during energy stress, but the consequences of these adaptations remain understudied. Here, we discovered that hexokinase 1 (HK1), a key glycolytic enzyme, forms rings around mitochondria during energy stress. These HK1-rings constrict mitochondria at contact sites with the endoplasmic reticulum (ER) and mitochondrial dynamics protein (MiD51). HK1-rings prevent mitochondrial fission by displacing the dynamin-related protein 1 (Drp1) from mitochondrial fission factor (Mff) and mitochondrial fission 1 protein (Fis1). The disassembly of HK1-rings during energy restoration correlated with mitochondrial fission. Mechanistically, we identified that the lack of ATP and glucose-6-phosphate (G6P) promotes the formation of HK1-rings. Mutations that affect the formation of HK1-rings showed that HK1-rings rewire cellular metabolism toward increased TCA cycle activity. Our findings highlight that HK1 is an energy stress sensor that regulates the shape, connectivity, and metabolic activity of mitochondria. Thus, the formation of HK1-rings may affect mitochondrial function in energy-stress-related pathologies.
Assuntos
Dinaminas , Metabolismo Energético , Hexoquinase , Mitocôndrias , Dinâmica Mitocondrial , Proteínas Mitocondriais , Hexoquinase/metabolismo , Hexoquinase/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/enzimologia , Dinaminas/metabolismo , Dinaminas/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Animais , Trifosfato de Adenosina/metabolismo , Estresse Fisiológico , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Ciclo do Ácido Cítrico , Glucose-6-Fosfato/metabolismo , Camundongos , Células HeLa , Células HEK293 , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , MutaçãoRESUMO
Metabolic syndrome (MS) is a widespread disease in developed countries, accompanied, among others, by decreased adiponectin serum levels and perturbed lipoprotein metabolism. The associations between the serum levels of adiponectin and lipoproteins have been extensively studied in the past under healthy conditions, yet it remains unexplored whether the observed associations also exist in patients with MS. Therefore, in the present study, we analyzed the serum levels of lipoprotein subclasses using nuclear magnetic resonance spectroscopy and examined their associations with the serum levels of adiponectin in patients with MS in comparison with healthy volunteers (HVs). In the HVs, the serum levels of adiponectin were significantly negatively correlated with the serum levels of large buoyant-, very-low-density lipoprotein, and intermediate-density lipoprotein, as well as small dense low-density lipoprotein (LDL) and significantly positively correlated with large buoyant high-density lipoprotein (HDL). In patients with MS, however, adiponectin was only significantly correlated with the serum levels of phospholipids in total HDL and large buoyant LDL. As revealed through logistic regression and orthogonal partial least-squares discriminant analyses, high adiponectin serum levels were associated with low levels of small dense LDL and high levels of large buoyant HDL in the HVs as well as high levels of large buoyant LDL and total HDL in patients with MS. We conclude that the presence of MS weakens or abolishes the strong associations between adiponectin and the lipoprotein parameters observed in HVs and disturbs the complex interplay between adiponectin and lipoprotein metabolism.
Assuntos
Adiponectina , Lipoproteínas , Síndrome Metabólica , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adiponectina/sangue , Estudos de Casos e Controles , Voluntários Saudáveis , Lipoproteínas/sangue , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , Espectroscopia de Ressonância Magnética , Síndrome Metabólica/sangueRESUMO
INTRODUCTION: An increasing body of evidence suggests a strong relationship between gut health and mental state. Lately, a connection between butyrate-producing bacteria and sleep quality has been discussed. The PROVIT study, as a randomized, double-blind, 4-week, multispecies probiotic intervention study, aims at elucidating the potential interconnection between the gut's metabolome and the molecular clock in individuals with major depressive disorder (MDD). METHODS: The aim of the PROVIT-CLOCK study was to analyze changes in core clock gene expression during treatment with probiotic intervention versus placebo in fasting blood and the connection with the serum- and stool-metabolome in patients with MDD (n = 53). In addition to clinical assessments in the PROVIT study, metabolomics analyses with 1H nuclear magnetic resonance spectroscopy (stool and serum) and gene expression (RT-qPCR) analysis of the core clock genes ARNTL, PER3, CLOCK, TIMELESS, NR1D1 in peripheral blood mononuclear cells of fasting blood were performed. RESULTS: The gene expression levels of the clock gene CLOCK were significantly altered only in individuals receiving probiotic add-on treatment. TIMELESS and ARNTL gene expression changed significantly over the 4-week intervention period in both groups. Various positive and negative correlations between metabolites in serum/stool and core clock gene expression levels were observed. CONCLUSION: Changing the gut microbiome by probiotic treatment potentially influences CLOCK gene expression. The preliminary results of the PROVIT-CLOCK study indicate a possible interconnection between the gut microbiome and circadian rhythm potentially orchestrated by metabolites.
RESUMO
The association between advanced oxidation protein products (AOPPs) and lipoprotein subclasses remains unexplored. Therefore, we performed comprehensive lipoprotein profiling of serum using NMR spectroscopy and examined the associations of lipoprotein subclasses with the serum levels of AOPPs in healthy volunteers (HVs) and patients with metabolic syndrome (MS). The serum levels of AOPPs were significantly positively correlated with the serum levels of very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL); however, they were significantly negatively correlated with high-density lipoprotein (HDL). These lipoproteins (and their subclasses) differed markedly regarding the direction of correlations between their lipid contents and AOPPs. The strength of the correlations and the relative contributions of the subclasses to the correlations were different in the HVs and patients with MS. As revealed by orthogonal partial least squares discriminant analyses, the serum levels of IDL were strong determinants of AOPPs in the HVs, whereas the serum levels of VLDL and the lipid content of LDL were strong determinants in both groups. We conclude that IDL, VLDL, and LDL facilitate, whereas HDL diminishes the bioavailability of serum AOPPs. The presence of MS and the lipid contents of the subclasses affect the relationship between lipoproteins and AOPPs.
RESUMO
BACKGROUND: Aronia melanocarpa is a berry rich in polyphenols known for health benefits. However, the bioavailability of polyphenols has been questioned, and the individual taste acceptance of the fruit with its specific flavor varies. We recently observed substantial differences in the tolerability of aronia juice among healthy females, with half of the individuals tolerating aronia juice without complaints. Given the importance of the gut microbiome in food digestion, we investigated in this secondary analysis of the randomized placebo-controlled parallel intervention study (ClinicalTrials.gov registration: NCT05432362) if aronia juice tolerability was associated with changes in intestinal microbiota and bacterial metabolites, seeking for potential mechanistic insights into the impact on aronia polyphenol tolerance and metabolic outcomes. RESULTS: Forty females were enrolled for this 6-week trial, receiving either 100 ml natural aronia juice (verum, V) twice daily or a polyphenol-free placebo (P) with a similar nutritional profile, followed by a 6-week washout. Within V, individuals were categorized into those who tolerated the juice well (Vt) or reported complaints (Vc). The gut microbiome diversity, as analyzed by 16S rRNA gene-based next-generation sequencing, remained unaltered in Vc but changed significantly in Vt. A MICOM-based flux balance analysis revealed pronounced differences in the 40 most predictive metabolites post-intervention. In Vc carbon-dioxide, ammonium and nine O-glycans were predicted due to a shift in microbial composition, while in Vt six bile acids were the most likely microbiota-derived metabolites. NMR metabolomics of plasma confirmed increased lipoprotein subclasses (LDL, VLDL) post-intervention, reverting after wash out. Stool samples maintained a stable metabolic profile. CONCLUSION: In linking aronia polyphenol tolerance to gut microbiota-derived metabolites, our study explores adaptive processes affecting lipoprotein profiles during high polyphenol ingestion in Vt and examines effects on mucosal gut health in response to intolerance to high polyphenol intake in Vc. Our results underpin the importance of individualized hormetic dosing for beneficial polyphenol effects, demonstrate dynamic gut microbiome responses to aronia juice, and emphasize personalized responses in polyphenol interventions.
Assuntos
Microbioma Gastrointestinal , Photinia , Feminino , Humanos , Microbioma Gastrointestinal/genética , Photinia/química , Photinia/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Metaboloma , Lipoproteínas/metabolismoRESUMO
The partial or complete loss of the sense of smell, which affects about 20% of the population, impairs the quality of life in many ways. Dysosmia and anosmia are mainly caused by aging, trauma, infections, or even neurodegenerative disease. Recently, the olfactory area-a site containing the olfactory receptor cells responsible for odor perception-was shown to harbor a complex microbiome that reflects the state of olfactory function. This initially observed correlation between microbiome composition and olfactory performance needed to be confirmed using a larger study cohort and additional analyses. A total of 120 participants (middle-aged, no neurodegenerative disease) were enrolled in the study to further analyze the microbial role in human olfactory function. Olfactory performance was assessed using the Sniffin' Stick battery, and participants were grouped accordingly (normosmia: n = 93, dysosmia: n = 27). The olfactory microbiome was analyzed by 16S rRNA gene amplicon sequencing and supplemented by metatranscriptomics in a subset (Nose 2.0). Propidium monoazide (PMA) treatment was performed to distinguish between intact and non-intact microbiome components. The gastrointestinal microbiome of these participants was also characterized by amplicon sequencing and metabolomics and then correlated with food intake. Our results confirm that normosmics and dysosmics indeed possess a distinguishable olfactory microbiome. Alpha diversity (i.e., richness) was significantly increased in dysosmics, reflected by an increase in the number of specific taxa (e.g., Rickettsia, Spiroplasma, and Brachybacterium). Lower olfactory performance was associated with microbial signatures from the oral cavity and periodontitis (Fusobacterium, Porphyromonas, and Selenomonas). However, PMA treatment revealed a higher accumulation of dead microbial material in dysosmic subjects. The gastrointestinal microbiome partially overlapped with the nasal microbiome but did not show substantial variation with respect to olfactory performance, although the diet of dysosmic individuals was shifted toward a higher meat intake. Dysosmia is associated with a higher burden of dead microbial material in the olfactory area, indicating an impaired clearance mechanism. As the microbial community of dysosmics (hyposmics and anosmics) appears to be influenced by the oral microbiome, further studies should investigate the microbial oral-nasal interplay in individuals with partial or complete olfactory loss.IMPORTANCEThe loss of the sense of smell is an incisive event that is becoming increasingly common in today's world due to infections such as COVID-19. Although this loss usually recovers a few weeks after infection, in some cases, it becomes permanent-why is yet to be answered. Since this condition often represents a psychological burden in the long term, there is a need for therapeutic approaches. However, treatment options are limited or even not existing. Understanding the role of the microbiome in the impairment of olfaction may enable the prediction of olfactory disorders and/or could serve as a possible target for therapeutic interventions.
Assuntos
Doenças Neurodegenerativas , Transtornos do Olfato , Pessoa de Meia-Idade , Humanos , Olfato/fisiologia , Anosmia/complicações , Qualidade de Vida , RNA Ribossômico 16S/genética , Doenças Neurodegenerativas/complicações , Transtornos do Olfato/complicaçõesRESUMO
COVID-19, caused by the SARS-CoV-2 coronavirus, emerged as a global pandemic in late 2019, resulting in significant global public health challenges. The emerging evidence suggests that diminished high-density lipoprotein (HDL) cholesterol levels are associated with the severity of COVID-19, beyond inflammation and oxidative stress. Here, we used nuclear magnetic resonance spectroscopy to compare the lipoprotein and metabolic profiles of COVID-19-infected patients with non-COVID-19 pneumonia. We compared the control group and the COVID-19 group using inflammatory markers to ensure that the differences in lipoprotein levels were due to COVID-19 infection. Our analyses revealed supramolecular phospholipid composite (SPC), phenylalanine, and HDL-related parameters as key discriminators between COVID-19-positive and non-COVID-19 pneumonia patients. More specifically, the levels of HDL parameters, including apolipoprotein A-I (ApoA-I), ApoA-II, HDL cholesterol, and HDL phospholipids, were significantly different. These findings underscore the potential impact of HDL-related factors in patients with COVID-19. Significantly, among the HDL-related metrics, the cholesterol efflux capacity (CEC) displayed the strongest negative association with COVID-19 mortality. CEC is a measure of how well HDL removes cholesterol from cells, which may affect the way SARS-CoV-2 enters cells. In summary, this study validates previously established markers of COVID-19 infection and further highlights the potential significance of HDL functionality in the context of COVID-19 mortality.
RESUMO
Considering the relationship between disease severity and the extent of metabolic derangement in heart failure, we hypothesized that the serum levels of metabolites may have prognostic value for 1-year mortality in acute heart failure (AHF). The AHF study was a prospective, observational study enrolling consecutive patients hospitalized due to AHF. Metabolites were measured in serum collected at admission using NMR spectroscopy. Out of 315 AHF patients, 118 (37.5%) died within 1 year after hospitalization for AHF. The serum levels of 8 out of 49 identified metabolites were significantly different between patients who were alive and those who died within 1 year after hospitalization for AHF. Of these, only valine was significantly associated with 1-year mortality (hazard ratio 0.73 per 1 standard deviation increase, 95% confidence interval: 0.59-0.90, p = 0.003) in the multivariable Cox regression analyses. Kaplan-Maier analysis showed significantly higher survival rates in AHF patients with valine levels above the median (>279.2 µmol/L) compared to those with valine levels ≤ 279.2 µmol/L. In a receiver operating characteristics curve analysis, valine was able to discriminate between the two groups with an area under the curve of 0.65 (95% CI 0.59-0.72). We conclude that valine serum levels might be of prognostic value in AHF.
RESUMO
BACKGROUND: Sarcopenia in liver cirrhosis is associated with low quality of life and high mortality risk. The pathogenesis has yet to be fully understood. We hypothesized that gut microbiome, bile acid (BA) composition and metabolites differ between cirrhotic patients with and without sarcopenia and contribute to pathogenesis. METHODS: Cirrhotic patients with (n = 78) and without (n = 38) sarcopenia and non-cirrhotic controls with (n = 39) and without (n = 20) sarcopenia were included in this study. Faecal microbiome composition was studied by 16S rDNA sequencing, serum and faecal BA composition by ultra-high-performance liquid chromatography-tandem mass spectrometry, and metabolite composition in serum, faeces and urine by nuclear magnetic resonance. RESULTS: Bacteroides fragilis, Blautia marseille, Sutterella spp. and Veillonella parvula were associated with cirrhotic patients with sarcopenia, whereas Bacteroides ovatus was more abundant in cirrhotic patients without sarcopenia. We observed significantly elevated secondary BAs, deoxycholic acid (DCA; P = 0.01) and lithocholic acid (LCA; P = 0.02), and the ratios of deoxycholic acid to cholic acid (DCA:CA; P = 0.04), lithocholic acid to chenodeoxycholic acid (LCA:CDCA; P = 0.03) and 12 alpha-hydroxylated to non-12 alpha-hydroxylated BAs (12-α-OH:non-12-α-OH BAs; P = 0.04) in serum of cirrhotic patients with sarcopenia compared with cirrhotic patients without sarcopenia, indicating an enhanced transformation of primary to secondary BAs by the gut microbiome. CA (P = 0.02) and the ratios of CA:CDCA (P = 0.03) and total ursodeoxycholic acid to total secondary BAs (T-UDCA:total-sec-BAs, P = 0.03) were significantly reduced in the stool of cirrhotic patients with sarcopenia compared with cirrhotic patients without sarcopenia. Also, valine and acetate were significantly reduced in the serum of cirrhotic patients with sarcopenia compared with cirrhotic patients without sarcopenia (P = 0.01 and P = 0.03, respectively). Multivariate logistic regression further confirmed the association of B. ovatus (P = 0.01, odds ratio [OR]: 12.8, 95% confidence interval [CI]: 168.1; 2.2), the ratios of 12-α-OH:non-12-α-OH BAs (P = 0.03, OR: 2.54, 95% CI: 0.99; 6.55) and T-UDCA:total-sec-BAs (P = 0.04, OR: 0.25, 95% CI: 0.06; 0.98) in serum and stool CA:CDCA (P = 0.04, OR: 0.79, 95% CI: 0.62; 0.99), and serum valine (P = 0.04, OR: 1.00, 95% CI: 1.02; 1.00) with sarcopenia in cirrhosis after correcting for the severity of liver disease and sex. CONCLUSIONS: Our study suggests a potential functional gut microbiome-host interaction linking sarcopenia with the altered gut microbiomes, BA profiles and amino acids pointing towards a potential mechanistic interplay in understanding sarcopenia pathogenesis.
Assuntos
Microbioma Gastrointestinal , Sarcopenia , Humanos , Ácidos e Sais Biliares , Qualidade de Vida , Sarcopenia/etiologia , Cirrose Hepática/complicações , Ácido Litocólico , Metaboloma , Ácido Desoxicólico , Valina/metabolismoRESUMO
The association between serum levels of endothelial lipase (EL) and the serum levels and composition of apolipoprotein B (apoB)-containing lipoproteins in healthy subjects and patients with metabolic syndrome (MS) remained unexplored. Therefore, in the present study, we determined the serum levels and lipid content of apoB-containing lipoproteins using nuclear magnetic resonance (NMR) spectroscopy and examined their association with EL serum levels in healthy volunteers (HVs) and MS patients. EL was significantly negatively correlated with the serum levels of cholesterol in large very low-density lipoprotein (VLDL) particles, as well as with total-cholesterol-, free-cholesterol-, triglyceride-, and phospholipid-contents of VLDL and intermediate-density lipoprotein particles in MS patients but not in HVs. In contrast, EL serum levels were significantly positively correlated with the serum levels of apoB, triglycerides, and phospholipids in large low-density lipoprotein particles in HVs but not in MS patients. EL serum levels as well as the serum levels and lipid content of the majority of apoB-containing lipoprotein subclasses were markedly different in MS patients compared with HVs. We conclude that EL serum levels are associated with the serum levels and lipid content of apoB-containing lipoproteins and that these associations are markedly affected by MS.
Assuntos
Síndrome Metabólica , Humanos , Voluntários Saudáveis , Lipoproteínas/metabolismo , Colesterol , Triglicerídeos , Lipoproteínas VLDL/metabolismo , Lipase , Apolipoproteínas B/metabolismo , Fosfolipídeos , Lipoproteínas LDL/metabolismoRESUMO
Metabolic syndrome (MS) is characterized by endothelial- and high-density lipoprotein (HDL) dysfunction and increased endothelial lipase (EL) serum levels. We examined the associations between EL serum levels, HDL (serum levels, lipid content, and function), and endothelial function in healthy volunteers (HV) and MS patients. Flow-mediated dilation (FMD), nitroglycerin-mediated dilation (NMD), serum levels of HDL subclasses (measured by nuclear magnetic resonance (NMR) spectroscopy), and EL serum levels differed significantly between HV and MS patients. The serum levels of triglycerides in large HDL particles were significantly positively correlated with FMD and NMD in HV, but not in MS patients. Cholesterol (C) and phospholipid (PL) contents of large HDL particles, calculated as HDL1-C/HDL1-apoA-I and HDL1-PL/HDL1-apoA-I, respectively, were significantly negatively correlated with FMD in HV, but not in MS patients. Cholesterol efflux capacity and arylesterase activity of HDL, as well as EL, were correlated with neither FMD nor NMD. EL was significantly negatively correlated with HDL-PL/HDL-apoA-I in HV, but not in MS patients, and with serum levels of small dense HDL containing apolipoprotein A-II in MS patients, but not in HV. We conclude that MS modulates the association between HDL and endothelial function, as well as between EL and HDL. HDL cholesterol efflux capacity and arylesterase activity, as well as EL serum levels, are not associated with endothelial function in HV or MS patients.