Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7147, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130900

RESUMO

Developing new capabilities to predict the risk of intracranial aneurysm rupture and to improve treatment outcomes in the follow-up of endovascular repair is of tremendous medical and societal interest, both to support decision-making and assessment of treatment options by medical doctors, and to improve the life quality and expectancy of patients. This study aims at identifying and characterizing novel flow-deviator stent devices through a high-fidelity computational framework that combines state-of-the-art numerical methods to accurately describe the mechanical exchanges between the blood flow, the aneurysm, and the flow-deviator and deep reinforcement learning algorithms to identify a new stent concepts enabling patient-specific treatment via accurate adjustment of the functional parameters in the implanted state.


Assuntos
Aneurisma Roto , Procedimentos Endovasculares , Aneurisma Intracraniano , Humanos , Aneurisma Intracraniano/cirurgia , Stents , Resultado do Tratamento , Hemodinâmica , Procedimentos Endovasculares/métodos
2.
J Chem Phys ; 122(24): 244913, 2005 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16035822

RESUMO

We consider here a low-density assembly of colloidal particles immersed in a critical polymer mixture of two chemically incompatible polymers. We assume that, close to the critical point of the free mixture, the colloids prefer to be surrounded by one polymer (critical adsorption). As result, one is assisted to a reversible colloidal aggregation in the nonpreferred phase, due the existence of a long-range attractive Casimir force between particles. This aggregation is a phase transition driving the colloidal system from dilute to dense phases, as the usual gas-liquid transition. We are interested in a quantitative investigation of the phase diagram of the immersed colloids. We suppose that the positions of particles are disordered, and the disorder is quenched and follows a Gaussian distribution. To apprehend the problem, use is made of the standard phi(4) theory, where the field phi represents the composition fluctuation (order parameter), combined with the standard cumulant method. First, we derive the expression of the effective free energy of colloids and show that this is of Flory-Huggins type. Second, we find that the interaction parameter u between colloids is simply a linear combination of the isotherm compressibility and specific heat of the free mixture. Third, with the help of the derived effective free energy, we determine the complete shape of the phase diagram (binodal and spinodal) in the (Psi,u) plane, with Psi as the volume fraction of immersed colloids. The continuous "gas-liquid" transition occurs at some critical point K of coordinates (Psi(c) = 0.5,u(c) = 2). Finally, we emphasize that the present work is a natural extension of that, relative to simple liquid mixtures incorporating colloids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA