Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903800

RESUMO

A broad range of inorganic nanoparticles (NPs) and their dissolved ions possess a possible toxicological risk for human health and the environment. Reliable and robust measurements of dissolution effects may be influenced by the sample matrix, which challenges the analytical method of choice. In this study, CuO NPs were investigated in several dissolution experiments. Two analytical techniques (dynamic light scattering (DLS) and inductively-coupled plasma mass spectrometry (ICP-MS)) were used to characterize NPs (size distribution curves) time-dependently in different complex matrices (e.g., artificial lung lining fluids and cell culture media). The advantages and challenges of each analytical approach are evaluated and discussed. Additionally, a direct-injection single particle (DI sp)ICP-MS technique for assessing the size distribution curve of the dissolved particles was developed and evaluated. The DI technique provides a sensitive response even at low concentrations without any dilution of the complex sample matrix. These experiments were further enhanced with an automated data evaluation procedure to objectively distinguish between ionic and NP events. With this approach, a fast and reproducible determination of inorganic NPs and ionic backgrounds can be achieved. This study can serve as guidance when choosing the optimal analytical method for NP characterization and for the determination of the origin of an adverse effect in NP toxicity.

3.
Nanoscale ; 14(12): 4690-4704, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35262538

RESUMO

We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles.

4.
Curr Med Chem ; 29(2): 358-368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33618638

RESUMO

Compared to the classical chemicals, nanoparticles (NPs) exhibit unique properties, which lead to challenges in sample preparation and analysis. Fractionation techniques and, in particular, hollow fiber flow field flow fractionation (HF5) have recently become popular in the characterization and quantification of nanomaterials, because of their fine fractionation capability in the nanoscale-range. When dealing with NPs, a great drawback during fractionation is the loss of particles in the fractionation devices, tubing and connectors. There is a need for studies to systematically explore and assess the quality of the fractionation process. A combination of two complementary mass-based setups was used to determine particle loss in HF5. Inductively coupled plasma mass spectrometry (ICP-MS) enabled the estimation of recovery rates for NPs after HF5 separation. Reciprocally, laser ablation ICP-MS (LA-ICP-MS) permitted the evaluation of particles retained on the hollow fiber. 15 nm Au-NPs in different concentrations were evaluated in this study and showed a recovery level for Au-NPs of 50 - 65% based on the applied concentrations after a complete HF5 separation run. Detection of sample deposition on the hollow fiber by LA-ICP-MS indicated a sample loss of about 8%. These findings are important for experiments relying on fractionation of low concentrated nanoparticulate samples.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas , Humanos , Espectrometria de Massas , Análise Espectral
5.
J Vis Exp ; (176)2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34747394

RESUMO

The physicochemical characterization of nanomaterials (NMs) is often an analytical challenge, due to their small size (at least one dimension in the nanoscale, i.e. 1-100 nm), dynamic nature, and diverse properties. At the same time, reliable and repeatable characterization is paramount to ensure safety and quality in the manufacturing of NM-bearing products. There are several methods available to monitor and achieve reliable measurement of nanoscale-related properties, one example of which is Ultraviolet-Visible Spectroscopy (UV-Vis). This is a well-established, simple, and inexpensive technique that provides non-invasive and fast real-time screening evaluation of NM size, concentration, and aggregation state. Such features make UV-Vis an ideal methodology to assess the proficiency testing schemes (PTS) of a validated standard operating procedure (SOP) intended to evaluate the performance and reproducibility of a characterization method. In this paper, the PTS of six partner laboratories from the H2020 project ACEnano were assessed through an interlaboratory comparison (ILC). Standard gold (Au) colloid suspensions of different sizes (ranging 5-100 nm) were characterized by UV-Vis at the different institutions to develop an implementable and robust protocol for NM size characterization.


Assuntos
Ouro , Nanoestruturas , Ouro/química , Nanoestruturas/química , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta/métodos , Água/química
6.
Molecules ; 26(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500752

RESUMO

ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations.

7.
J Vis Exp ; (163)2020 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-32986038

RESUMO

Nanoparticles have gained increasing attention in recent years due to their potential and application in different fields including medicine, cosmetics, chemistry, and their potential to enable advanced materials. To effectively understand and regulate the physico-chemical properties and potential adverse effects of nanoparticles, validated measurement procedures for the various properties of nanoparticles need to be developed. While procedures for measuring nanoparticle size and size distribution are already established, standardized methods for analysis of their surface chemistry are not yet in place, although the influence of the surface chemistry on nanoparticle properties is undisputed. In particular, storage and preparation of nanoparticles for surface analysis strongly influences the analytical results from various methods, and in order to obtain consistent results, sample preparation must be both optimized and standardized. In this contribution, we present, in detail, some standard procedures for preparing nanoparticles for surface analytics. In principle, nanoparticles can be deposited on a suitable substrate from suspension or as a powder. Silicon (Si) wafers are commonly used as substrate, however, their cleaning is critical to the process. For sample preparation from suspension, we will discuss drop-casting and spin-coating, where not only the cleanliness of the substrate and purity of the suspension but also its concentration play important roles for the success of the preparation methodology. For nanoparticles with sensitive ligand shells or coatings, deposition as powders is more suitable, although this method requires particular care in fixing the sample.


Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Espectrometria de Massas , Nanopartículas/química , Espectroscopia Fotoeletrônica , Tamanho da Partícula , Pós , Dióxido de Silício/química , Propriedades de Superfície , Suspensões
8.
Materials (Basel) ; 13(6)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235788

RESUMO

Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA