RESUMO
Menkes disease is a lethal neurodegenerative disorder of copper metabolism caused by mutations in an evolutionarily conserved copper transporter, ATP7A. Based on our prior clinical and animal studies, we seek to develop a therapeutic approach suitable for application in affected human subjects, using the mottled-brindled (mo-br) mouse model that closely mimics the Menkes disease biochemical and clinical phenotypes. Here, we evaluate the efficacy of low-, intermediate-, and high-dose recombinant adeno-associated virus serotype 9 (rAAV9)-ATP7A delivered to the cerebrospinal fluid (CSF), in combination with subcutaneous administration of clinical-grade copper histidinate (sc CuHis, IND #34,166). Mutant mice that received high-dose (1.6 × 1010 vg) cerebrospinal fluid-directed rAAV9-rsATP7A plus sc copper histidinate showed 53.3% long-term (≥300-day) survival compared to 0% without treatment or with either treatment alone. The high-dose rAAV9-rsATP7A plus sc copper histidinate-treated mutant mice showed increased brain copper levels, normalized brain neurochemical levels, improvement of brain mitochondrial abnormalities, and normal growth and neurobehavioral outcomes. This synergistic treatment effect represents the most successful rescue to date of the mo-br mouse model. Based on these findings, and the absence of a large animal model, we propose cerebrospinal fluid-directed rAAV9-rsATP7A gene therapy plus subcutaneous copper histidinate as a potential therapeutic approach to cure or ameliorate Menkes disease.
RESUMO
Both bipolar disorder (BD) and major depressive disorder (MDD) have high morbidity and share a genetic background. Treatment options for these mood disorders are currently suboptimal for many patients; however, specific genetic variables may be involved in both pathophysiology and response to treatment. Agents such as the glutamatergic modulator ketamine are effective in treatment-resistant mood disorders, underscoring the potential importance of the glutamatergic system as a target for improved therapeutics. Here we review genetic studies linking the glutamatergic system to the pathophysiology and therapeutics of mood disorders. We screened 763 original genetic studies of BD or MDD that investigated genes encoding targets of the pathway/mediators related to the so-called tripartite glutamate synapse, including pre- and post-synaptic neurons and glial cells; 60 papers were included in this review. The findings suggest the involvement of glutamate-related genes in risk for mood disorders, treatment response, and phenotypic characteristics, although there was no consistent evidence for a specific gene. Target genes of high interest included GRIA3 and GRIK2 (which likely play a role in emergent suicidal ideation after antidepressant treatment), GRIK4 (which may influence treatment response), and GRM7 (which potentially affects risk for mood disorders). There was stronger evidence that glutamate-related genes influence risk for BD compared with MDD. Taken together, the studies show a preliminary relationship between glutamate-related genes and risk for mood disorders, suicide, and treatment response, particularly with regard to targets on metabotropic and ionotropic receptors.
Assuntos
Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Receptores de Glutamato/genética , HumanosRESUMO
ATP7A duplications are estimated to represent the molecular cause of Menkes disease in 4-10% of affected patients. We identified a novel duplication of ATP7A exons 1-7 discovered in the context of a challenging prenatal diagnostic situation. All other reported ATP7A duplications (n = 24) involved intragenic tandem duplications, predicted to disrupt the normal translational reading frame and produce nonfunctional ATP7A proteins. In contrast, the exon 1-7 duplication occurred at the 5' end of the ATP7A gene rather than within the gene and did not correspond to any known copy number variants. We hypothesized that, if the exon 1-7 duplication was in tandem, functional ATP7A molecules could be generated depending on promoter selection, mRNA splicing, and the proximal and distal duplication breakpoints and that Menkes disease would be averted. Here, we present detailed molecular characterization of this novel duplication, as well as 2-year postnatal clinical and biochemical correlations. The case highlights the ongoing need for cautious interpretation of prenatal genetic test results.
RESUMO
DNA double-strand breaks (DSBs) frequently occur in rapidly dividing cells such as proliferating progenitors during central nervous system development. If they cannot be repaired, these lesions will cause cell death. The non-homologous end joining (NHEJ) DNA repair pathway is the only pathway available to repair DSBs in post-mitotic neurons. The non-homologous end joining factor 1 (Nhej1) protein is a key component of the NHEJ pathway. Nhej1 interacts with Xrcc4 and Lig4 to repair DSBs. Loss of function of Xrcc4 or Lig4 is embryonic lethal in the mouse while the loss of Nhej1 is not. Surprisingly, the brains of Nhej1-deficient mice appear to be normal although NHEJ1 deficiency in humans causes severe neurological dysfunction and microcephaly. Here, we studied the consequences of Nhej1 dysfunction for the development of the cerebral cortex using in utero electroporation of inactivating small hairpin RNAs (shRNAs) in the developing rat brain. We found that decreasing Nhej1 expression during neuronal migration phases causes severe neuronal migration defects visualized at embryonic stages by an accumulation of heterotopic neurons in the intermediate zone. Knocked-down cells die by 7 days after birth and the brain regions where RNA interference was achieved are structurally abnormal, suffering from a reduction of the width of the external cortical layers. These results indicate that the Nhej1 protein is necessary for proper rat cortical development. Neurons unable to properly repair DNA DSBs are unable to reach their final destination during the development and undergo apoptosis, leading to an abnormal cortical development.
Assuntos
Córtex Cerebral/anormalidades , Córtex Cerebral/embriologia , Proteínas de Ligação a DNA/metabolismo , Células 3T3 , Animais , Animais Recém-Nascidos , Morte Celular , Movimento Celular , Córtex Cerebral/metabolismo , Regulação para Baixo , Eletroporação , Feminino , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Neurônios/patologia , Ratos , Fatores de Transcrição/metabolismoRESUMO
Mottled-dappled (Mo-dp) is a mouse model of Menkes disease caused by a large, previously uncharacterized deletion in the 5' region of Atp7a, the mouse ortholog of ATP7A. Affected mutants die in utero at embryonic day 17, and show bending and thickening of the ribs and distortion of the pectoral and pelvic girdles and limbs. To characterize this allele, we designed a custom 4x180K microarray on the mouse X chromosome and performed comparative genomic hybridization using extracted DNA from normal and carrier Mo-dp females, and identified an approximately 9 kb deletion. We used PCR to fine-map the breakpoints and amplify a junction fragment of 630 bp. Sequencing of the junction fragment disclosed the exact breakpoint locations and that the Mo-dp deletion is precisely 8990 bp, including approximately 2 kb in the promoter region of Atp7a. Western blot analysis of Mo-dp heterozygous brains showed diminished amounts of Atp7a protein, consistent with reduced expression due to the promoter region deletion on one allele. In heterozygous females, brain copper levels tended to be lower compared to wild type whereas neurochemical analyses revealed higher dihydroxyphenylacetic acid:dihydroxyphenylglycol (DOPAC:DHPG) and dopamine:norepinephrine (DA:NE) ratios compared to normal (P=0.002 and 0.029, respectively), consistent with partial deficiency of dopamine-beta-hydroxylase, a copper-dependent enzyme. Heterozygous females showed no significant differences in body weight compared to wild type females. Our results delineate the molecular details of the Mo-dp mutation for the first time and define novel biochemical findings in heterozygous female carriers of this allele.
Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Modelos Animais de Doenças , Síndrome dos Cabelos Torcidos/genética , Alelos , Animais , Western Blotting , Peso Corporal , Encéfalo/metabolismo , Hibridização Genômica Comparativa , Cobre/metabolismo , ATPases Transportadoras de Cobre , Dopamina beta-Hidroxilase/metabolismo , Feminino , Heterozigoto , Humanos , Síndrome dos Cabelos Torcidos/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Deleção de Sequência , Cromossomo X/genéticaRESUMO
BACKGROUND: Determining the relationship between clinical phenotype and genotype in genetic diseases is important in clinical practice. In general, frameshift mutations are expected to produce premature termination codons, leading to production of mutant transcripts destined for degradation by nonsense-mediated decay. In X-linked recessive diseases, male patients with frameshift mutations typically have a severe or even lethal phenotype. PATIENT: We report a case of a 17-month-old boy with Menkes disease (NIM #309400), an X-linked recessive copper metabolism disorder caused by mutations in the ATP7A copper transporter gene. He exhibited an unexpectedly late onset and experienced milder symptoms. STUDY AND RESULT: His genomic DNA showed a de novo two-nucleotide deletion in exon 4 of ATP7A, predicting a translational frameshift and premature stop codon, and a classic severe phenotype. Characterization of his ATP7A mRNA showed no abnormal splicing. CONCLUSION: We speculate that translation reinitiation could occur downstream to the premature termination codon and produce a partially functional ATP7A protein. Study of the child's fibroblasts found no evidence of translation reinitiation; however, the possibility remains that this phenomenon occurred in neural tissues and influenced the clinical phenotype.
Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Síndrome dos Cabelos Torcidos/genética , Idade de Início , Sequência de Bases , ATPases Transportadoras de Cobre , Análise Mutacional de DNA , Mutação da Fase de Leitura , Humanos , Lactente , Masculino , Fenótipo , RNA Mensageiro/genética , Deleção de SequênciaRESUMO
Fetal brain-directed gene addition represents an under-appreciated tool for investigating novel therapeutic approaches in animal models of central nervous system diseases with early prenatal onset. Choroid plexuses (CPs) are specialized neuroectoderm-derived structures that project into the brain's ventricles, produce cerebrospinal fluid (CSF), and regulate CSF biochemical composition. Targeting the CP may be advantageous for adeno-associated viral (AAV) gene therapy for central nervous system disorders due to its immunoprivileged location and slow rate of epithelial turnover. Yet the capacity of AAV vectors to transduce CP has not been delineated precisely. We performed intracerebroventricular injections of recombinant AAV serotype 5-green fluorescent protein (rAAV5-GFP) or rAAV9-GFP in embryonic day 15 (E15) embryos of CD-1 and C57BL/6 pregnant mice and quantified the percentages of GFP expression in CP epithelia (CPE) from lateral and fourth ventricles on E17, postnatal day 2 (P2), and P22. AAV5 was selective for CPE and showed significantly higher transduction efficiency in C57BL/6 mice (P = 0.0128). AAV9 transduced neurons and glial cells in both the mouse strains, in addition to CPE. We documented GFP expression in CPE on E17, within just 48 hours of rAAV administration to the fetal lateral ventricle, and expression by both the serotypes persisted at P130. Our results indicate that prenatal administration of rAAV5 and rAAV9 enables rapid, robust, and sustained transduction of mouse CPE and buttress the rationale for experimental therapeutics targeting the CP.Molecular Therapy-Nucleic Acids (2013) 2, e101; doi:10.1038/mtna.2013.27; published online 25 June 2013.
RESUMO
Menkes disease is a lethal X-linked recessive neurodegenerative disorder of copper transport caused by mutations in ATP7A, which encodes a copper-transporting ATPase. Early postnatal treatment with copper injections often improves clinical outcomes in affected infants. While Menkes disease newborns appear normal neurologically, analyses of fetal tissues including placenta indicate abnormal copper distribution and suggest a prenatal onset of the metal transport defect. In an affected fetus whose parents found termination unacceptable and who understood the associated risks, we began in utero copper histidine treatment at 31.5 weeks gestational age. Copper histidine (900 µg per dose) was administered directly to the fetus by intramuscular injection (fetal quadriceps or gluteus) under ultrasound guidance. Percutaneous umbilical blood sampling enabled serial measurement of fetal copper and ceruloplasmin levels that were used to guide therapy over a four-week period. Fetal copper levels rose from 17 µg/dL prior to treatment to 45 µg/dL, and ceruloplasmin levels from 39 mg/L to 122 mg/L. After pulmonary maturity was confirmed biochemically, the baby was delivered at 35.5 weeks and daily copper histidine therapy (250 µg sc b.i.d.) was begun. Despite this very early intervention with copper, the infant showed hypotonia, developmental delay, and electroencephalographic abnormalities and died of respiratory failure at 5.5 months of age. The patient's ATP7A mutation (Q724H), which severely disrupted mRNA splicing, resulted in complete absence of ATP7A protein on Western blots. These investigations suggest that prenatally initiated copper replacement is inadequate to correct Menkes disease caused by severe loss-of-function mutations, and that postnatal ATP7A gene addition represents a rational approach in such circumstances.
Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Feto/efeitos dos fármacos , Histidina/análogos & derivados , Síndrome dos Cabelos Torcidos/tratamento farmacológico , Síndrome dos Cabelos Torcidos/genética , Mutação , Compostos Organometálicos/uso terapêutico , Catecóis/sangue , Ceruloplasmina/metabolismo , Cobre/sangue , ATPases Transportadoras de Cobre , Feminino , Morte Fetal/patologia , Histidina/administração & dosagem , Histidina/uso terapêutico , Humanos , Compostos Organometálicos/administração & dosagem , Placenta/metabolismo , Placenta/patologia , Gravidez , NatimortoRESUMO
Mental retardation is a frequent condition that is clinically and genetically highly heterogeneous. One of the strategies used to identify new causative genes is to take advantage of balanced chromosomal rearrangements in affected patients. We characterized a de novo t(10;13) balanced translocation in a patient with severe mental retardation and major hypotonia. We found that the balanced translocation is molecularly balanced. The translocation breakpoint disrupts the coding sequence of a single gene, called ATP8A2. The ATP8A2 gene is not ubiquitously expressed, but it is highly expressed in the brain. In situ hybridization performed in mouse embryos at different stages of development with the mouse homologue confirms this observation. A total of 38 patients with a similar phenotype were screened for mutations in the ATP8A2 gene but no mutations were found. The balanced translocation identified in this patient disrupts a single candidate gene highly expressed in the brain. Although this chromosomal rearrangement could be the cause of the severe phenotype of the patient, we were not able to identify additional cases. Extensive screening in the mentally retarded population will be needed to determine if ATP8A2 haploinsufficiency or dysfunction causes a neurological phenotype in humans.
Assuntos
Adenosina Trifosfatases/genética , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 13/genética , Doenças do Sistema Nervoso/genética , Proteínas de Transferência de Fosfolipídeos/genética , Translocação Genética/genética , Adenosina Trifosfatases/metabolismo , Animais , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Testes Genéticos , Humanos , Lactente , Recém-Nascido , Camundongos , Mutação/genética , Fenótipo , Proteínas de Transferência de Fosfolipídeos/metabolismo , GravidezRESUMO
We previously identified an inactivating disruption of the X-linked KIAA2022 gene by a chromosomal rearrangement in two male patients with severe mental retardation. In order to determine if KIAA2022 has a role during the development of the central nervous system, we have cloned its murine ortholog, Kiaa2022, determined its genomic structure and studied its expression during mouse development. We show that Kiaa2022 is preferentially expressed in the central nervous system and that the transcript is highly expressed in postmitotic neurons. The expression of Kiaa2022 is first detectable at E10.5 to reach a maximum at P3 where it is notably expressed in the hippocampus, the entorhinal cortex and strongly in the ventral premammillary nucleus. After P3, the expression of Kiaa2022 decreases and maintains very low levels thereafter. Our results show that Kiaa2022 is expressed in the developing brain and that it may play a role in postmitotic, maturing neurons.
RESUMO
Moderate mental retardation (MR) could affect up to 3% of the general population. A proportion of these cases has a genetic origin. Genes responsible for mental retardation can be identified taking advantage of familial cases or patients carrying a chromosomal rearrangement. We have studied a female patient with mild mental retardation and dysmorphic features. Cytogenetic and molecular investigations revealed a de novo balanced translocation 46, XX, t(5;18)(q21.3;q21.32) in the patient. The karyotypes of the parents are normal. We mapped the breakpoints of the translocation on chromosomes 5 and 18 by fluorescence in situ hybridization (FISH). The characterization of the chromosomal breakpoints helped us identify a new candidate region containing a portion of a gene. This gene is called FER. It is a tyrosine kinase located on the chromosome 5q21.3. We found no known genes in the genomic region corresponding to the BAC spanning the 18q21.32 breakpoint. Molecular analysis showed that the FER gene was not interrupted by the translocation breakpoint on chromosome 5. Real-time quantitative PCR performed using RNA from the patient, compared to her parents and controls, showed no significant modification of FER expression ruling out a putative position effect, at least in the tissue tested. Our data suggest that FER is not implicated in the mental retardation phenotype observed in the reported patient. Therefore the MR phenotype might not be caused by the translocation.