Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Neurobiol Exp (Wars) ; 83(2): 179-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37493534

RESUMO

Crocin and Terminalia chebula (T. chebula) were proven to have neuroprotective effects. In this study, we evaluated the preventive effects of crocin and alcoholic extract of the T. chebula alone and in combination to examine their efficacy against chronic restraint stress (CRS)­induced cognitive impairment, anxiety­like behaviors, hippocampal synaptic plasticity deficit as well as neuronal arborization damage in the hippocampal CA1 neurons. Over 14 consecutive days, animals received crocin, T. chebula, or their combination (5 min before CRS). The elevated plus­maze results showed that crocin and T. chebula alone and in combination treatment significantly increased the time spent in open arms, percentage of open arm entries, and head dipping as compared with the CRS group. Barnes maze results showed that administration of crocin and T. chebula alone and their combination significantly improves spatial memory indicators such as distance traveled, latency time to achieving the target hole, and the number of errors when compared to the CRS group. These learning deficits in CRS animals correlated with a reduction of long-term potentiation (LTP) in hippocampal CA1 synapses, which both T. chebula and crocin treatment improved field excitatory postsynaptic potentials (fEPSP) amplitude and fEPSP slope reduction induced by CRS. Golgi­Cox staining showed that T. chebula and crocin treatment increased the number of dendrites and soma arbors in the CA1 neurons compared with the CRS group. Our results suggest that both T. chebula and crocin attenuated CRS­induced anxiety­like behaviors, memory impairment, and synaptic plasticity loss in hippocampal CA1 neurons. We found no significant difference between single treatments of T. chebula or crocin and their combination in protecting CRS­induced anxiety­like behaviors, memory impairment, and synaptic plasticity loss in hippocampal CA1 neurons.


Assuntos
Terminalia , Ratos , Animais , Masculino , Hipocampo , Carotenoides/farmacologia , Carotenoides/uso terapêutico , Transtornos da Memória/etiologia , Transtornos da Memória/induzido quimicamente , Plasticidade Neuronal , Memória Espacial
2.
Synapse ; 77(5): e22278, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315214

RESUMO

Chronic restraint stress induces anxiety-like behaviors and emotional abnormalities via an alteration of synaptic remodeling in the amygdala and the hippocampus. Given that the date palm spathe has been shown to have neuroprotective effects on different experimental models, this study aimed to address whether the date palm spathe extract (hydroalcoholic extract of date palm spathe [HEDPP]) can reduce chronic restraint stress-induced behavioral, electrophysiological, and morphological changes in the rat model. Thirty-two male Wistar rats (weight 200-220 g) were randomly divided into control, stress, HEDPP, and stress + HEDPP for 14 days. Animals were submitted to restraint stress for 2 h per day for 14 consecutive days. The animals of the HEDPP and stress + HEDPP groups were supplemented with HEDPP (125 mg/kg) during these 14 days, 30 min before being placed in the restraint stress tube. We used passive avoidance, open-field test, and field potential recording to assess emotional memory, anxiety-like behavioral and long-term potentiation in the CA1 region of the hippocampus, respectively. Moreover, Golgi-Cox staining was used to investigate the amygdala neuron dendritic arborization. Results showed that stress induction was associated with behavioral changes (anxiety-like behavioral and emotional memory impairment), and the administration of HEDPP effectively normalized these deficits. HEDPP remarkably amplified the slope and amplitude of mean-field excitatory postsynaptic potentials (fEPSPs) in the CA1 area of the hippocampus in stressed rats. Chronic restraint stress significantly decreased the dendritic arborization in the central and basolateral nucleus of the amygdala neuron. HEDPP suppressed this stress effect in the central nucleus of the amygdala. Our findings indicated that HEDPP administration improves stress-induced learning impairment and memory and anxiety-like behaviors by preventing adverse effects on synaptic plasticity in the hippocampus and amygdala.


Assuntos
Potenciação de Longa Duração , Phoeniceae , Animais , Masculino , Ratos , Tonsila do Cerebelo , Hipocampo , Plasticidade Neuronal/fisiologia , Ratos Wistar , Estresse Psicológico/tratamento farmacológico
3.
3 Biotech ; 13(5): 156, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37152003

RESUMO

In traditional medicine, Tarooneh (a hardcover of the date palm; Phoenix dactylifera) has known as a sedative and relaxant medicine. In this study, we evaluated the protective effects of Tarooneh in the anxiety-like behavior, cognitive deficit, and neuronal damages in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and frontal cortex neurons employing a rat model of chronic restraint stress. The animal received Tarooneh extract for 14 consecutive days in water, and chronic restraint stress was performed daily during this period. The results of the Barnes maze test showed that treatment with Tarooneh significantly improves spatial memory parameters such as latency time to find the target hole, number of errors, and distance traveling compared to the stress group. The EPM results showed that Tarooneh significantly increased the time spent in open arms and the percentage of entries into open arms and significantly decreased the frequency of head dipping behavior compared to animals in the stress group. Golgi-Cox staining indicates that loss of neural spine density in DG, CA1, CA3, and frontal cortex due to chronic restraint stress, was prevented with daily administration of Tarooneh. The results of cresyl-violet staining indicate that Tarooneh significantly increased the number of CV-positive neurons in the frontal cortex and CA1 region of the hippocampus compared to the stress group. Our results suggest that Tarooneh potentially prevented and improved effects in anxiety-like behavior, memory impairment, and synaptic plasticity loss in frontal and hippocampal neurons induced by chronic restraint stress. In conclusion, our results suggest that Tarooneh prevented and improved anxiety-like behavior, cognitive deficit, and neuronal damages in the CA1, CA3, and DG regions of the hippocampus and frontal cortex neurons induced by chronic restraint stress.

4.
J Chem Neuroanat ; 121: 102090, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35292357

RESUMO

Many studies suggest that animals exhibit lateralized behaviors during stressful situations. However, which brain structure in each hemisphere underlies such lateralized function is unclear. This study, investigated the effects of bilateral and unilateral inhibition of the ventral hippocampus (VH) on chronic restraint stress (CRS) induced memory impairment. Unilateral and bilateral VH cannulation was carried out. After a week of recovery, lidocaine hydrochloride was injected into the rat VH ten minutes before CRS induction for seven consecutive days. Behavioral (Y-maze and Morris water maze; MWM)), and histological (glial fibrillary acidic protein; GFAP, ionized calcium-binding adapter protein-1; Iba-1, as well as Golgi-Cox staining in the VH) studies were performed. The result showed no significant difference between the effect of right-only and left-only of VH inhibition induced by lidocaine on spatial learning and memory and working memory. In addition, lidocaine treated groups were significantly lower in spatial learning and memory and working memory than control groups during non-stress conditions. Furthermore, the dendritic arborization in the right-only, left-only and bilateral VH microinjected lidocaine significantly decreased after the CRS condition compared with the control group. However, lidocaine microinjection resulted in up-regulation levels of GFAP and Iba1 in the right-only, left-only and bilateral of VH and they were higher significantly than that of their control groups after CRS and during non-stress condition. Meanwhile, there is no significant difference between the effect of right-only and left-only of VH inhibition on neuronal arborization and glial cells during non-stress and after the CRS condition. In conclusion, bilateral VH inhibition can give rise to increase CRS-induced memory impairment. These findings were accompanied by elevating GFAP and Iba1 while reducing the dendritic arborization.


Assuntos
Lateralidade Funcional , Hipocampo , Animais , Hipocampo/metabolismo , Lidocaína/metabolismo , Lidocaína/farmacologia , Masculino , Transtornos da Memória/metabolismo , Ratos , Ratos Wistar , Aprendizagem Espacial
5.
Clin Exp Pharmacol Physiol ; 48(6): 877-889, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33686675

RESUMO

Anxiety, hippocampus synaptic plasticity deficit, as well as pro-inflammatory cytokines, are involved in Alzheimer's disease (AD). The present study is designed to evaluate the possible therapeutic effect of crocin on anxiety-like behaviours, hippocampal synaptic plasticity and neuronal shape, as well as pro-inflammatory cytokines in the hippocampus using in vivo amyloid-beta (Aß) models of AD. The Aß peptide (1-42) was bilaterally injected into the frontal-cortex. Five hours after the surgery, the rats were given intraperitoneal (IP) crocin (30 mg/kg) daily up to 12 days. Elevated plus maze results showed that crocin treatment after bilateral Aß injection significantly increased the percentage of spent time into open arms, frequency of entries, and percentage of entries into open arms as compared with the Aß group. In the open field test, the Aß+crocin group showed a higher percentage of spent time in the centre and frequency of entries into central zone as compare with the Aß treated animals. Administering crocin increased the number of soma, dendrites and axonal arbores in the CA1 neurons among the rats with Aß neurotoxicity. Cresyl violet (CV) staining showed that crocin increased the number of CV-positive cells in the CA1 region of the hippocampus compared with the Aß group. Silver-nitrate staining indicated that crocin reduced neurofibrillary tangle formation induced by Aß. Crocin treatment attenuated the expression of TNF-α and IL-1ß mRNA in the hippocampus compared with the Aß group. Our results suggest that crocin attenuated Aß-induced anxiety-like behaviours and neuronal damage, and synaptic plasticity loss in hippocampal CA1 neurons may via its anti-inflammatory effects.


Assuntos
Peptídeos beta-Amiloides , Carotenoides , Doença de Alzheimer , Animais , Hipocampo , Masculino , Transtornos da Memória , Neurônios , Fragmentos de Peptídeos , Ratos
6.
J Chem Neuroanat ; 113: 101837, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32534024

RESUMO

Amyloid ß-peptides (Aß) are considered as a major hallmark of Alzheimer's disease (AD) that can induce synaptic loss and apoptosis in brain regions, particularly in the cortex and the hippocampus. Evidence suggests that crocin, as the major component of saffron, can exhibit neuromodulatory effects in AD. However, specific data related to their efficacy to attenuate the synaptic loss and neuronal death in animal models of AD are limited. Hence, we investigated the efficacy of crocin in the CA3 and dentate gyrus (DG) regions of the hippocampus and also in frontal cortex neurons employing a rat model of AD. Male Wistar rats were randomly divided into control, sham, AD model, crocin, and AD model + crocin groups, with 8 rats per group. AD model was established by injecting Aß1-42 into the frontal cortex rats, and thereafter the rats were administrated by crocin (30 mg/kg) for a duration of 12-day. The number of live cells, neuronal arborization and apoptosis were measured using a Cresyl violet, Golgi-Cox and TUNEL staining, respectively. Results showed that, the number of live cells in the hippocampus pyramidal neurons in the CA3 and granular cells in the DG regions of the AD rats significantly decreased, which was significantly rescued by crocin. Compared with the control group, the axonal, spine and dendrites arborization in the frontal cortex and CA3 region of the AD model group significantly decreased. The crocin could significantly reverse this arborization loss in the AD rats (P < 0.05). The apoptotic cell number in the CA3 and DG regions in the AD model group was significantly higher than that of the control group (P < 0.05), while crocin significantly decreased the apoptotic cell number in the AD group (P < 0.05). Conclusion. Crocin can improve the synaptic loss and neuronal death of the AD rats possibly by reducing the neuronal apoptosis.


Assuntos
Doença de Alzheimer/patologia , Região CA3 Hipocampal/efeitos dos fármacos , Carotenoides/farmacologia , Giro Denteado/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/patologia , Giro Denteado/metabolismo , Giro Denteado/patologia , Modelos Animais de Doenças , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Masculino , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos , Ratos Wistar
7.
J Mol Neurosci ; 65(1): 17-27, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29680983

RESUMO

Huntington's disease (HD) is a genetically heritable disorder, linked with continuing cell loss and degeneration mostly in the striatum. Currently, cell therapy approaches in HD have essentially been focused on replenishing or shielding cells lost over the period of the disease. Herein, we sought to explore the in vitro and in vivo efficacy of primary rat Sertoli cells (SCs) and their paracrine effect against oxidative stress with emphasis on HD. Initially, SCs were isolated and immunophenotypically characterized by positive expression of GATA4. Besides, synthesis of neurotrophic factors of glial cell-derived neurotrophic factor and VEGF by SCs were proved. Next, PC12 cells were exposed to hydrogen peroxide in the presence of conditioned media (CM) collected from SC (SC-CM) and cell viability and neuritogenesis were determined. Bilateral striatal implantation of SC in 3-nitropropionic acid (3-NP)-lesioned rat models was performed, and 1 month later, post-graft analysis was done. According to our in vitro results, the CM of SC protected PC12 cells against oxidative stress and remarkably augmented cell viability and neurite outgrowth. Moreover, grafted SCs survived, exhibited decreases in both gliosis and inflammatory cytokine levels, and ameliorated motor coordination and muscle activity, together with an increase in striatal volume as well as in dendritic length of the striatum in HD rats. In conclusion, our results indicate that SCs provide a supportive environment, with potential therapeutic benefits aimed at HD.


Assuntos
Morte Celular , Corpo Estriado/patologia , Doença de Huntington/terapia , Movimento , Células de Sertoli/transplante , Animais , Células Cultivadas , Corpo Estriado/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fator de Transcrição GATA4/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Gliose , Masculino , Neurogênese , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo , Células PC12 , Comunicação Parácrina , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Células de Sertoli/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Synapse ; 72(5): e22026, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29357117

RESUMO

Extracellular beta-amyloid (Aß) accumulation and deposition is the main factor, which causes synaptic loss and eventually cells death in Alzheimer's disease (AD). Memory loss and long-term potentiation (LTP) dysfunction in the hippocampus are involved in the AD. The involvement of crocin, as the main and active constituent of saffron extract in learning and memory processes, has been proposed. Here we investigated the probable therapeutic effect of crocin on memory, LTP, and neuronal apoptosis using in vivo Aß models of the AD. The Aß peptide (1-42) was bilaterally administered into the frontal-cortex using stereotaxic apparatus. Five hours after surgery, rats were given intraperitoneal crocin (30 mg/kg) daily, which repeated for 12 days. Barnes maze results showed that administration of crocin significantly improves spatial memory indicators such as latency time to achieving the target hole and the number of errors when compared to Aß-group. Passive avoidance test revealed that crocin significantly increased the step-through-latency compared to Aß-treated alone. These learning deficits in Aß-treated animals correlated with a reduction of LTP in hippocampal CA1 synapses in freely moving rats, which crocin improved population spike amplitude and mean field excitatory postsynaptic potentials (fEPSP) slope reduction induced by Aß. Neuronal apoptosis was detected by TUNEL assay and the expression levels of c-Fos proteins were examined by Western blotting. Crocin significantly reduced the number of TUNEL-positive cells in the CA1 region and decreased c-Fos in the hippocampus compared to Aß-group. In vivo Aß treatment altered significantly the electrophysiological properties of CA1 neurons and crocin further confirmed a neuroprotective action against Aß toxicity.


Assuntos
Antioxidantes/uso terapêutico , Região CA1 Hipocampal/patologia , Carotenoides/uso terapêutico , Potenciação de Longa Duração/efeitos dos fármacos , Transtornos da Memória , Neurônios/efeitos dos fármacos , Peptídeos beta-Amiloides/toxicidade , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Modelos Animais de Doenças , Estimulação Elétrica , Eletrodos Implantados , Marcação In Situ das Extremidades Cortadas , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Fragmentos de Peptídeos/toxicidade , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA