Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 89(11): 1369-75, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22749126

RESUMO

Biodegradation of trichloroethene (TCE) near a Dense Non Aqueous Phase Liquid (DNAPL) can enhance the dissolution rate of the DNAPL by increasing the concentration gradient at the DNAPL-water interface. Two-dimensional flow-through sand boxes containing a TCE DNAPL and inoculated with a TCE dechlorinating consortium were set up to measure this bio-enhanced dissolution under anaerobic conditions. The total mass of TCE and daughter products in the effluent of the biotic boxes was 3-6 fold larger than in the effluent of the abiotic box. However, the mass of daughter products only accounted for 19-55% of the total mass of chlorinated compounds in the effluent, suggesting that bio-enhanced dissolution factors were maximally 1.3-2.2. The enhanced dissolution most likely primarily resulted from variable DNAPL distribution rather than biodegradation. Specific dechlorination rates previously determined in a stirred liquid medium were used in a reactive transport model to identify the rate limiting factors. The model adequately simulated the overall TCE degradation when predicted resident microbial numbers approached observed values and indicated an enhancement factor for TCE dissolution of 1.01. The model shows that dechlorination of TCE in the 2D box was limited due to the short residence time and the self-inhibition of the TCE degradation. A parameter sensitivity analysis predicts that the bio-enhanced dissolution factor for this TCE source zone can only exceed a value of 2 if the TCE self-inhibition is drastically reduced (when a TCE tolerant dehalogenating community is present) or if the DNAPL is located in a low-permeable layer with a small Darcy velocity.


Assuntos
Tricloroetileno/química , Poluentes Químicos da Água/química , Bactérias/metabolismo , Biodegradação Ambiental , Modelos Químicos , Tricloroetileno/análise , Tricloroetileno/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
2.
J Contam Hydrol ; 119(1-4): 89-98, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-20952091

RESUMO

The dechlorination rate in a flow-through porous matrix can be described by the species specific dechlorination rate observed in a liquid batch unless mass transport limitations prevail. This hypothesis was examined by comparing dechlorination rates in liquid batch with that in column experiments at various flow rates (3-9-12 cm day(-1)). Columns were loaded with an inoculated sand and eluted with a medium containing 1mM trichloroethene (TCE) for 247 days. Dechlorination in the column treatments increased with decreasing flow rate, illustrating the effect of the longer residence time. Zeroth order TCE or cis-DCE degradation rates were 4-7 folds larger in columns than in corresponding batch systems which could be explained by the higher measured Geobacter and Dehalococcoides numbers per unit pore volume in the columns. The microbial numbers also explained the variability in dechlorination rate among flow rate treatments marked by a large elution of the dechlorinating species' yield as flow increased. Stop flow events did not reveal mass transport limitations for dechlorination. We conclude that flow rate effects on reactive transport of TCE in this coarse sand are explained by residence time and by microbial transport and that mass transport limitations in this porous matrix are limited.


Assuntos
Chloroflexi/fisiologia , Geobacter/fisiologia , Tricloroetileno/química , Poluentes Químicos da Água/química , Biodegradação Ambiental , Dióxido de Silício/química
3.
Water Res ; 44(1): 331-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19818985

RESUMO

The reductive dechlorination of trichloroethene (TCE) in a TCE source zone can be self-inhibited by TCE toxicity. A study was set up to examine the toxicity of TCE in terms of species specific degradation kinetics and microbial growth and to evaluate models that describe this self-inhibition. A batch experiment was performed using the TCE dechlorinating KB-1 culture at initial TCE concentrations ranging from 0.04mM to saturation (8.4mM). Biodegradation activity was highest at 0.3mM TCE and no activity was found at concentrations from 4 to 8mM. Species specific TCE and cis-DCE (cis-dichloroethene) degradation rates and Dehalococcoides numbers were modeled with Monod kinetics combined with either Haldane inhibition or a log-logistic dose-response inhibition on these rates. The log-logistic toxicity model appeared the most appropriate model and predicts that the species specific degradation activities are reduced by a factor 2 at about 1mM TCE, respectively cis-DCE. However, the model showed that the inhibitive effects on the time for TCE to ethene degradation are a complex function of degradation kinetics and the initial cell densities of the dechlorinating species. Our analysis suggests that the self-inhibition on biodegradation cannot be predicted by a single concentration threshold without information on the cell densities.


Assuntos
Modelos Teóricos , Tricloroetileno/metabolismo , Biodegradação Ambiental , Chloroflexi/metabolismo , Halogenação , Cinética
4.
J Microbiol Methods ; 73(2): 142-7, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18410973

RESUMO

Members of the genus Dehalococcoides are well-known for their capacity to reductively dechlorinate chlorinated organic pollutants. The availability of quantitative and sensitive detection methods is of major interest for research on the ecology of those environmentally important micro-organisms. In this paper we describe the development of a Catalyzed Reporter Deposition-Fluorescent In Situ Hybridization (CARD-FISH) for detection of Dehalococcoides cells in enrichment cultures using two oligonucleotide sequences which target two different lineages of Dehalococcoides as probes. Both sequences were previously applied in conventional FISH as probes. Conjugation of the probe to horseradish peroxidase (HRP) did not change the specificity of the probes and bright fluorescent signals were obtained. Despite the use of higher concentrations of probe and the application of longer exposure times in the conventional FISH procedure, CARD-FISH resulted in more intense signals. The CARD-FISH method was applied to a vinyl chloride (VC)-reductively-dechlorinating enrichment culture. Only the probe targeting the CBDB1 lineage of Dehalococcoides reacted with the sample which was in agreement with previous nucleic acid based analysis. The culture consisted of 51%+/-8% of Dehalococcoides cells. Furthermore, the CARD-FISH probes for detecting Dehalococcoides were combined with FISH probes for simultaneous detection of either Bacteria or Archaea which should allow rapid insight into the relative dynamics of the different members of dechlorinating communities as a response to environmental changes. Overall, CARD-FISH proved to be a rapid, reliable and convenient method to detect and quantify Dehalococcoides cells.


Assuntos
Chloroflexi/isolamento & purificação , Hibridização in Situ Fluorescente/métodos , Chloroflexi/genética , Peroxidase do Rábano Silvestre/metabolismo , Sondas de Oligonucleotídeos/genética , Sensibilidade e Especificidade , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA