Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38302441

RESUMO

Ocular position drifts during gaze fixation are significantly less well understood than microsaccades. We recently identified a short-latency ocular position drift response, of ∼1 min arc amplitude, that is triggered within <100 ms by visual onsets. This systematic eye movement response is feature-tuned and seems to be coordinated with a simultaneous resetting of the saccadic system by visual stimuli. However, much remains to be learned about the drift response, especially for designing better-informed neurophysiological experiments unraveling its mechanistic substrates. Here we systematically tested multiple new feature tuning properties of drift responses. Using highly precise eye tracking in three male rhesus macaque monkeys, we found that drift responses still occur for tiny foveal visual stimuli. Moreover, the responses exhibit size tuning, scaling their amplitude (both up and down) as a function of stimulus size, and they also possess a monotonically increasing contrast sensitivity curve. Importantly, short-latency drift responses still occur for small peripheral visual targets, which additionally introduce spatially directed modulations in drift trajectories toward the appearing peripheral stimuli. Drift responses also remain predominantly upward even for stimuli exclusively located in the lower visual field and even when starting gaze position is upward. When we checked the timing of drift responses, we found it was better synchronized to stimulus-induced saccadic inhibition than to stimulus onset. These results, along with a suppression of drift response amplitudes by peristimulus saccades, suggest that drift responses reflect the rapid impacts of short-latency and feature-tuned visual neural activity on final oculomotor control circuitry in the brain.


Assuntos
Fixação Ocular , Visão Ocular , Animais , Masculino , Macaca mulatta , Movimentos Oculares , Movimentos Sacádicos , Percepção Visual/fisiologia
2.
Sci Rep ; 13(1): 21730, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066070

RESUMO

Primate superior colliculus (SC) neurons exhibit visual feature tuning properties and are implicated in a subcortical network hypothesized to mediate fast threat and/or conspecific detection. However, the mechanisms through which SC neurons contribute to peripheral object detection, for supporting rapid orienting responses, remain unclear. Here we explored whether, and how quickly, SC neurons detect real-life object stimuli. We presented experimentally-controlled gray-scale images of seven different object categories, and their corresponding luminance- and spectral-matched image controls, within the extrafoveal response fields of SC neurons. We found that all of our functionally-identified SC neuron types preferentially detected real-life objects even in their very first stimulus-evoked visual bursts. Intriguingly, even visually-responsive motor-related neurons exhibited such robust early object detection. We further identified spatial frequency information in visual images as an important, but not exhaustive, source for the earliest (within 100 ms) but not for the late (after 100 ms) component of object detection by SC neurons. Our results demonstrate rapid and robust detection of extrafoveal visual objects by the SC. Besides supporting recent evidence that even SC saccade-related motor bursts can preferentially represent visual objects, these results reveal a plausible mechanism through which rapid orienting responses to extrafoveal visual objects can be mediated.


Assuntos
Neurônios , Colículos Superiores , Animais , Colículos Superiores/fisiologia , Neurônios/fisiologia , Movimentos Sacádicos , Primatas , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
3.
J Neurophysiol ; 130(5): 1282-1302, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818591

RESUMO

Saccadic inhibition refers to a short-latency transient cessation of saccade generation after visual sensory transients. This oculomotor phenomenon occurs with a latency that is consistent with a rapid influence of sensory responses, such as stimulus-induced visual bursts, on oculomotor control circuitry. However, the neural mechanisms underlying saccadic inhibition are not well understood. Here, we exploited the fact that macaque monkeys experience robust saccadic inhibition to test the hypothesis that inhibition time and strength exhibit systematic visual feature tuning properties to a multitude of visual feature dimensions commonly used in vision science. We measured saccades in three monkeys actively controlling their gaze on a target, and we presented visual onset events at random times. Across seven experiments, the visual onsets tested size, spatial frequency, contrast, orientation, motion direction, and motion speed dependencies of saccadic inhibition. We also investigated how inhibition might depend on the behavioral relevance of the appearing stimuli. We found that saccadic inhibition starts earlier, and is stronger, for large stimuli of low spatial frequencies and high contrasts. Moreover, saccadic inhibition timing depends on motion direction and orientation, with earlier inhibition systematically occurring for horizontally drifting vertical gratings. On the other hand, saccadic inhibition is stronger for faster motions and when the appearing stimuli are subsequently foveated. Besides documenting a range of feature tuning dimensions of saccadic inhibition to the properties of exogenous visual stimuli, our results establish macaque monkeys as an ideal model system for unraveling the neural mechanisms underlying a ubiquitous oculomotor phenomenon in visual neuroscience.NEW & NOTEWORTHY Visual onsets dramatically reduce saccade generation likelihood with very short latencies. Such latencies suggest that stimulus-induced visual responses, normally jump-starting perceptual and scene analysis processes, can also directly impact the decision of whether to generate saccades or not, causing saccadic inhibition. Consistent with this, we found that changing the appearance of the visual onsets systematically alters the properties of saccadic inhibition. These results constrain neurally inspired models of coordination between saccade generation and exogenous sensory stimulation.


Assuntos
Movimentos Oculares , Movimentos Sacádicos , Animais , Movimento (Física) , Macaca mulatta , Inibição Psicológica , Tempo de Reação/fisiologia , Estimulação Luminosa
4.
Proc Natl Acad Sci U S A ; 120(38): e2305759120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695898

RESUMO

Movement control is critical for successful interaction with our environment. However, movement does not occur in complete isolation of sensation, and this is particularly true of eye movements. Here, we show that the neuronal eye movement commands emitted by the superior colliculus (SC), a structure classically associated with oculomotor control, encompass a robust visual sensory representation of eye movement targets. Thus, similar saccades toward different images are associated with different saccade-related "motor" bursts. Such sensory tuning in SC saccade motor commands appeared for all image manipulations that we tested, from simple visual features to real-life object images, and it was also strongest in the most motor neurons in the deeper collicular layers. Visual-feature discrimination performance in the motor commands was also stronger than in visual responses. Comparing SC motor command feature discrimination performance to that in the primary visual cortex during steady-state gaze fixation revealed that collicular motor bursts possess a reliable perisaccadic sensory representation of the peripheral saccade target's visual appearance, exactly when retinal input is expected to be most uncertain. Our results demonstrate that SC neuronal movement commands likely serve a fundamentally sensory function.


Assuntos
Movimentos Oculares , Movimento , Neurônios Motores , Movimentos Sacádicos , Discriminação Psicológica
5.
J Neurosci ; 43(41): 6884-6897, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37640553

RESUMO

Visual neural processing is distributed among a multitude of sensory and sensory-motor brain areas exhibiting varying degrees of functional specializations and spatial representational anisotropies. Such diversity raises the question of how perceptual performance is determined, at any one moment in time, during natural active visual behavior. Here, exploiting a known dichotomy between the primary visual cortex (V1) and superior colliculus (SC) in representing either the upper or lower visual fields, we asked whether peri-saccadic orientation identification performance is dominated by one or the other spatial anisotropy. Humans (48 participants, 29 females) reported the orientation of peri-saccadic upper visual field stimuli significantly better than lower visual field stimuli, unlike their performance during steady-state gaze fixation, and contrary to expected perceptual superiority in the lower visual field in the absence of saccades. Consistent with this, peri-saccadic superior colliculus visual neural responses in two male rhesus macaque monkeys were also significantly stronger in the upper visual field than in the lower visual field. Thus, peri-saccadic orientation identification performance is more in line with oculomotor, rather than visual, map spatial anisotropies.SIGNIFICANCE STATEMENT Different brain areas respond to visual stimulation, but they differ in the degrees of functional specializations and spatial anisotropies that they exhibit. For example, the superior colliculus (SC) both responds to visual stimulation, like the primary visual cortex (V1), and controls oculomotor behavior. Compared with the primary visual cortex, the superior colliculus exhibits an opposite pattern of upper/lower visual field anisotropy, being more sensitive to the upper visual field. Here, we show that human peri-saccadic orientation identification performance is better in the upper compared with the lower visual field. Consistent with this, monkey superior colliculus visual neural responses to peri-saccadic stimuli follow a similar pattern. Our results indicate that peri-saccadic perceptual performance reflects oculomotor, rather than visual, map spatial anisotropies.


Assuntos
Movimentos Sacádicos , Campos Visuais , Animais , Feminino , Masculino , Humanos , Macaca mulatta , Percepção Visual/fisiologia , Movimentos Oculares , Colículos Superiores/fisiologia , Estimulação Luminosa
6.
J Neurophysiol ; 130(2): 225-237, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377194

RESUMO

For successful adaptive behavior, exogenous environmental events must be sensed and reacted to as efficiently as possible. In the lab, the mechanisms underlying such efficiency are often studied with eye movements. Using controlled trials, careful measures of eye movement reaction times, directions, and kinematics suggest a form of "exogenous" oculomotor capture by external events. However, even in controlled trials, exogenous onsets necessarily come asynchronously to internal brain state. We argue that variability in the effectiveness of "exogenous" capture is inevitable. We review an extensive set of evidence demonstrating that before orienting must come interruption, a process that partially explains such variability. More importantly, we present a novel neural mechanistic account of interruption, leveraging the presence of early sensory processing capabilities in the very final stages of oculomotor control brain circuitry.


Assuntos
Movimentos Sacádicos , Colículos Superiores , Movimentos Oculares , Tempo de Reação , Encéfalo
7.
Annu Rev Vis Sci ; 9: 361-383, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37040792

RESUMO

The superior colliculus (SC) is a subcortical brain structure that is relevant for sensation, cognition, and action. In nonhuman primates, a rich history of studies has provided unprecedented detail about this structure's role in controlling orienting behaviors; as a result, the primate SC has become primarily regarded as a motor control structure. However, as in other species, the primate SC is also a highly visual structure: A fraction of its inputs is retinal and complemented by inputs from visual cortical areas, including the primary visual cortex. Motivated by this, recent investigations are revealing the rich visual pattern analysis capabilities of the primate SC, placing this structure in an ideal position to guide orienting movements. The anatomical proximity of the primate SC to both early visual inputs and final motor control apparatuses, as well as its ascending feedback projections to the cortex, affirms an important role for this structure in active perception.


Assuntos
Colículos Superiores , Córtex Visual , Animais , Visão Ocular , Retina , Primatas
8.
J Neurosci ; 42(50): 9356-9371, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36319117

RESUMO

Visual processing is segregated into ON and OFF channels as early as in the retina, and the superficial (output) layers of the primary visual cortex (V1) are dominated by neurons preferring dark stimuli. However, it is not clear how the timing of neural processing differs between "darks" and "brights" in general, especially in light of psychophysical evidence; it is also equally not clear how subcortical visual pathways that are critical for active orienting represent stimuli of positive (luminance increments) and negative (luminance decrements) contrast polarity. Here, we recorded from all visually-responsive neuron types in the superior colliculus (SC) of two male rhesus macaque monkeys. We presented a disk (0.51° radius) within the response fields (RFs) of neurons, and we varied, across trials, stimulus Weber contrast relative to a gray background. We also varied contrast polarity. There was a large diversity of preferences for darks and brights across the population. However, regardless of individual neural sensitivity, most neurons responded significantly earlier to dark than bright stimuli. This resulted in a dissociation between neural preference and visual response onset latency: a neuron could exhibit a weaker response to a dark stimulus than to a bright stimulus of the same contrast, but it would still have an earlier response to the dark stimulus. Our results highlight an additional candidate visual neural pathway for explaining behavioral differences between the processing of darks and brights, and they demonstrate the importance of temporal aspects in the visual neural code for orienting eye movements.SIGNIFICANCE STATEMENT Objects in our environment, such as birds flying across a bright sky, often project shadows (or images darker than the surround) on our retina. We studied how primate superior colliculus (SC) neurons visually process such dark stimuli. We found that the overall population of SC neurons represented both dark and bright stimuli equally well, as evidenced by a relatively equal distribution of neurons that were either more or less sensitive to darks. However, independent of sensitivity, the great majority of neurons detected dark stimuli earlier than bright stimuli, evidenced by a smaller response latency for the dark stimuli. Thus, SC neural response latency can be dissociated from response sensitivity, and it favors the faster detection of dark image contrasts.


Assuntos
Colículos Superiores , Vias Visuais , Animais , Masculino , Colículos Superiores/fisiologia , Macaca mulatta , Estimulação Luminosa , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Neurônios/fisiologia
9.
Commun Biol ; 5(1): 1222, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369354

RESUMO

The primate superior colliculus (SC) contains a topographic map of space, such that the anatomical location of active neurons defines a desired eye movement vector. Complementing such a spatial code, SC neurons also exhibit saccade-related bursts that are tightly synchronized with movement onset. Current models suggest that such bursts constitute a rate code dictating movement kinematics. Here, using two complementary approaches, we demonstrate a dissociation between the SC rate code and saccade kinematics. First, we show that SC burst strength systematically varies depending on whether saccades of the same amplitude are directed towards the upper or lower visual fields, but the movements themselves have similar kinematics. Second, we show that for the same saccade vector, when saccades are significantly slowed down by the absence of a visible saccade target, SC saccade-related burst strengths can be elevated rather than diminished. Thus, SC saccade-related motor bursts do not necessarily dictate movement kinematics.


Assuntos
Movimentos Sacádicos , Colículos Superiores , Animais , Colículos Superiores/fisiologia , Fenômenos Biomecânicos , Macaca mulatta , Movimentos Oculares
10.
Commun Biol ; 5(1): 692, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821404

RESUMO

Visual perception remains stable across saccadic eye movements, despite the concurrent strongly disruptive visual flow. This stability is partially associated with a reduction in visual sensitivity, known as saccadic suppression, which already starts in the retina with reduced ganglion cell sensitivity. However, the retinal circuit mechanisms giving rise to such suppression remain unknown. Here, we describe these mechanisms using electrophysiology in mouse, pig, and macaque retina, 2-photon calcium imaging, computational modeling, and human psychophysics. We find that sequential stimuli, like those that naturally occur during saccades, trigger three independent suppressive mechanisms in the retina. The main mechanism is triggered by contrast-reversing sequential stimuli and originates within the receptive field center of ganglion cells. It does not involve inhibition or other known suppressive mechanisms like saturation or adaptation. Instead, it relies on temporal filtering of the inherently slow response of cone photoreceptors coupled with downstream nonlinearities. Two further mechanisms of suppression are present predominantly in ON ganglion cells and originate in the receptive field surround, highlighting another disparity between ON and OFF ganglion cells. The mechanisms uncovered here likely play a role in shaping the retinal output following eye movements and other natural viewing conditions where sequential stimulation is ubiquitous.


Assuntos
Retina , Movimentos Sacádicos , Animais , Humanos , Camundongos , Estimulação Luminosa/métodos , Retina/fisiologia , Suínos , Visão Ocular , Percepção Visual/fisiologia
11.
Proc Natl Acad Sci U S A ; 119(24): e2121860119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675430

RESUMO

The foveal visual image region provides the human visual system with the highest acuity. However, it is unclear whether such a high fidelity representational advantage is maintained when foveal image locations are committed to short-term memory. Here, we describe a paradoxically large distortion in foveal target location recall by humans. We briefly presented small, but high contrast, points of light at eccentricities ranging from 0.1 to 12°, while subjects maintained their line of sight on a stable target. After a brief memory period, the subjects indicated the remembered target locations via computer controlled cursors. The biggest localization errors, in terms of both directional deviations and amplitude percentage overshoots or undershoots, occurred for the most foveal targets, and such distortions were still present, albeit with qualitatively different patterns, when subjects shifted their gaze to indicate the remembered target locations. Foveal visual images are severely distorted in short-term memory.


Assuntos
Fóvea Central , Memória de Curto Prazo , Rememoração Mental , Fóvea Central/fisiologia , Humanos , Percepção Visual
12.
J Eye Mov Res ; 14(3)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34122750

RESUMO

We describe a high-performance, pupil-based binocular eye tracker that approaches the performance of a well-established commercial system, but at a fraction of the cost. The eye tracker is built from standard hardware components, and its software (written in Visual C++) can be easily implemented. Because of its fast and simple linear calibration scheme, the eye tracker performs best in the central 10 degrees of the visual field. The eye tracker possesses a number of useful features: (1) automated calibration simultaneously in both eyes while subjects fixate four fixation points sequentially on a computer screen, (2) automated realtime continuous analysis of measurement noise, (3) automated blink detection, (4) and realtime analysis of pupil centration artifacts. This last feature is critical because it is known that pupil diameter changes can be erroneously registered by pupil-based trackers as a change in eye position. We evaluated the performance of our system against that of a wellestablished commercial system using simultaneous measurements in 10 participants. We propose our low-cost eye tracker as a promising resource for studies of binocular eye movements.

13.
Elife ; 102021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33955354

RESUMO

At any moment in time, new information is sampled from the environment and interacts with ongoing brain state. Often, such interaction takes place within individual circuits that are capable of both mediating the internally ongoing plan as well as representing exogenous sensory events. Here, we investigated how sensory-driven neural activity can be integrated, very often in the same neuron types, into ongoing saccade motor commands. Despite the ballistic nature of saccades, visually induced action potentials in the rhesus macaque superior colliculus (SC), a structure known to drive eye movements, not only occurred intra-saccadically, but they were also associated with highly predictable modifications of ongoing eye movements. Such predictable modifications reflected a simultaneity of movement-related discharge at one SC site and visually induced activity at another. Our results suggest instantaneous readout of the SC during movement generation, irrespective of activity source, and they explain a significant component of kinematic variability of motor outputs.


Assuntos
Movimentos Oculares/fisiologia , Mesencéfalo/fisiologia , Colículos Superiores/fisiologia , Potenciais de Ação , Animais , Fenômenos Eletrofisiológicos , Estudos Longitudinais , Macaca mulatta , Masculino , Manejo de Espécimes
14.
J Vis ; 21(5): 15, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34003243

RESUMO

Across saccades, perceptual detectability of brief visual stimuli is strongly diminished. We recently observed that this perceptual suppression phenomenon is jumpstarted in the retina, suggesting that the phenomenon might be significantly more visual in nature than normally acknowledged. Here, we explicitly compared saccadic suppression strength when saccades were made across a uniform image of constant luminance versus when saccades were made across image patches of different luminance, width, and trans-saccadic luminance polarity. We measured perceptual contrast thresholds of human subjects for brief peri-saccadic flashes of positive (luminance increments) or negative (luminance decrements) polarity. Thresholds were >6-7 times higher when saccades translated a luminance stripe or edge across the retina than when saccades were made over a completely uniform image patch. Critically, both background luminance and flash luminance polarity strongly modulated peri-saccadic contrast thresholds. In addition, all of these very same visual dependencies also occurred in the absence of any saccades, but with qualitatively similar rapid translations of image patches across the retina. This similarity of visual dependencies with and without saccades supports the notion that perceptual saccadic suppression may be fundamentally a visual phenomenon, which strongly motivates neurophysiological and theoretical investigations on the role of saccadic eye movement commands in modulating its properties.


Assuntos
Movimentos Sacádicos , Percepção Visual , Humanos , Luz , Retina , Visão Ocular
15.
Front Neural Circuits ; 15: 638429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776656

RESUMO

Visual selection in primates is intricately linked to eye movements, which are generated by a network of cortical and subcortical neural circuits. When visual selection is performed covertly, without foveating eye movements toward the selected targets, a class of fixational eye movements, called microsaccades, is still involved. Microsaccades are small saccades that occur when maintaining precise gaze fixation on a stationary point, and they exhibit robust modulations in peripheral cueing paradigms used to investigate covert visual selection mechanisms. These modulations consist of changes in both microsaccade directions and frequencies after cue onsets. Over the past two decades, the properties and functional implications of these modulations have been heavily studied, revealing a potentially important role for microsaccades in mediating covert visual selection effects. However, the neural mechanisms underlying cueing effects on microsaccades are only beginning to be investigated. Here we review the available causal manipulation evidence for these effects' cortical and subcortical substrates. In the superior colliculus (SC), activity representing peripheral visual cues strongly influences microsaccade direction, but not frequency, modulations. In the cortical frontal eye fields (FEF), activity only compensates for early reflexive effects of cues on microsaccades. Using evidence from behavior, theoretical modeling, and preliminary lesion data from the primary visual cortex and microstimulation data from the lower brainstem, we argue that the early reflexive microsaccade effects arise subcortically, downstream of the SC. Overall, studying cueing effects on microsaccades in primates represents an important opportunity to link perception, cognition, and action through unaddressed cortical-subcortical neural interactions. These interactions are also likely relevant in other sensory and motor modalities during other active behaviors.


Assuntos
Sinais (Psicologia) , Movimentos Oculares , Animais , Córtex Visual Primário , Movimentos Sacádicos , Percepção Visual
16.
J Neurophysiol ; 125(4): 1121-1138, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534661

RESUMO

The primate superior colliculus (SC) has recently been shown to possess both a large foveal representation as well as a varied visual processing repertoire. This structure is also known to contribute to eye movement generation. Here, we describe our current understanding of how SC visual and movement-related signals interact within the realm of small eye movements associated with the foveal scale of visuomotor behavior. Within the SC's foveal representation, there is a full spectrum of visual, visual-motor, and motor-related discharge for fixational eye movements. Moreover, a substantial number of neurons only emit movement-related discharge when microsaccades are visually guided, but not when similar movements are generated toward a blank. This represents a particularly striking example of integrating vision and action at the foveal scale. Beyond that, SC visual responses themselves are strongly modulated, and in multiple ways, by the occurrence of small eye movements. Intriguingly, this impact can extend to eccentricities well beyond the fovea, causing both sensitivity enhancement and suppression in the periphery. Because of large foveal magnification of neural tissue, such long-range eccentricity effects are neurally warped into smaller differences in anatomical space, providing a structural means for linking peripheral and foveal visual modulations around fixational eye movements. Finally, even the retinal-image visual flows associated with tiny fixational eye movements are signaled fairly faithfully by peripheral SC neurons with relatively large receptive fields. These results demonstrate how studying active vision at the foveal scale represents an opportunity for understanding primate vision during natural behaviors involving ever-present foveating eye movements.NEW & NOTEWORTHY The primate superior colliculus (SC) is ideally suited for active vision at the foveal scale: it enables detailed foveal visual analysis by accurately driving small eye movements, and it also possesses a visual processing machinery that is sensitive to active eye movement behavior. Studying active vision at the foveal scale in the primate SC is informative for broader aspects of active perception, including the overt and covert processing of peripheral extra-foveal visual scene locations.


Assuntos
Comportamento Animal/fisiologia , Movimentos Oculares/fisiologia , Fóvea Central/fisiologia , Atividade Motora/fisiologia , Primatas/fisiologia , Desempenho Psicomotor/fisiologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Animais
17.
J Neurophysiol ; 125(1): 282-295, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427577

RESUMO

Microsaccades have a steady rate of occurrence during maintained gaze fixation, which gets transiently modulated by abrupt sensory stimuli. Such modulation, characterized by a rapid reduction in microsaccade frequency followed by a stronger rebound phase of high microsaccade rate, is often described as the microsaccadic rate signature, owing to its stereotyped nature. Here, we investigated the impacts of stimulus polarity (luminance increments or luminance decrements relative to background luminance) and size on the microsaccadic rate signature. We presented brief, behaviorally irrelevant visual flashes consisting of large or small, white or black stimuli over an otherwise gray image background. Both large and small stimuli caused robust early microsaccadic inhibition, but postinhibition microsaccade rate rebound was significantly delayed and weakened for large stimuli when compared with small ones. Critically, small black stimuli were associated with stronger modulations in the microsaccade rate signature than small white stimuli, particularly in the postinhibition rebound phase, and black stimuli also amplified the incidence of early stimulus-directed microsaccades. Our results demonstrate that the microsaccadic rate signature is sensitive to stimulus size and polarity, and they point to dissociable neural mechanisms underlying early microsaccadic inhibition after stimulus onset and later microsaccadic rate rebound at longer times thereafter. These results also demonstrate early access of oculomotor control circuitry to diverse sensory representations, particularly for momentarily inhibiting saccade generation with short latencies.NEW & NOTEWORTHY Microsaccade rate is transiently reduced after sudden stimulus onsets, and then strongly rebounds before returning to baseline. We explored the influence of stimulus polarity (black vs. white) and size on this "rate signature." Large stimuli caused more muted microsaccadic rebound than small ones, and microsaccadic rebound was also differentially affected by black versus white stimuli, particularly with small stimuli. These results suggest dissociated neural mechanisms for microsaccadic inhibition and rebound in the microsaccadic rate signature.


Assuntos
Movimentos Sacádicos/fisiologia , Percepção Visual , Animais , Macaca mulatta , Masculino , Estimulação Luminosa
18.
J Neurosci ; 40(49): 9496-9506, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33127854

RESUMO

Covert and overt spatial selection behaviors are guided by both visual saliency maps derived from early visual features as well as priority maps reflecting high-level cognitive factors. However, whether mid-level perceptual processes associated with visual form recognition contribute to covert and overt spatial selection behaviors remains unclear. We hypothesized that if peripheral visual forms contribute to spatial selection behaviors, then they should do so even when the visual forms are task-irrelevant. We tested this hypothesis in male and female human subjects as well as in male macaque monkeys performing a visual detection task. In this task, subjects reported the detection of a suprathreshold target spot presented on top of one of two peripheral images, and they did so with either a speeded manual button press (humans) or a speeded saccadic eye movement response (humans and monkeys). Crucially, the two images, one with a visual form and the other with a partially phase-scrambled visual form, were completely irrelevant to the task. In both manual (covert) and oculomotor (overt) response modalities, and in both humans and monkeys, response times were faster when the target was congruent with a visual form than when it was incongruent. Importantly, incongruent targets were associated with almost all errors, suggesting that forms automatically captured selection behaviors. These findings demonstrate that mid-level perceptual processes associated with visual form recognition contribute to covert and overt spatial selection. This indicates that neural circuits associated with target selection, such as the superior colliculus, may have privileged access to visual form information.SIGNIFICANCE STATEMENT Spatial selection of visual information either with (overt) or without (covert) foveating eye movements is critical to primate behavior. However, it is still not clear whether spatial maps in sensorimotor regions known to guide overt and covert spatial selection are influenced by peripheral visual forms. We probed the ability of humans and monkeys to perform overt and covert target selection in the presence of spatially congruent or incongruent visual forms. Even when completely task-irrelevant, images of visual objects had a dramatic effect on target selection, acting much like spatial cues used in spatial attention tasks. Our results demonstrate that traditional brain circuits for orienting behaviors, such as the superior colliculus, likely have privileged access to visual object representations.


Assuntos
Percepção Espacial/fisiologia , Percepção Visual/fisiologia , Adulto , Animais , Feminino , Fixação Ocular , Percepção de Forma/fisiologia , Humanos , Macaca mulatta , Masculino , Orientação Espacial/fisiologia , Estimulação Luminosa , Desempenho Psicomotor , Tempo de Reação/fisiologia , Reconhecimento Psicológico , Movimentos Sacádicos/fisiologia
19.
Elife ; 92020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32758358

RESUMO

The eyes are never still during maintained gaze fixation. When microsaccades are not occurring, ocular position exhibits continuous slow changes, often referred to as drifts. Unlike microsaccades, drifts remain to be viewed as largely random eye movements. Here we found that ocular position drifts can, instead, be very systematically stimulus-driven, and with very short latencies. We used highly precise eye tracking in three well trained macaque monkeys and found that even fleeting (~8 ms duration) stimulus presentations can robustly trigger transient and stimulus-specific modulations of ocular position drifts, and with only approximately 60 ms latency. Such drift responses are binocular, and they are most effectively elicited with large stimuli of low spatial frequency. Intriguingly, the drift responses exhibit some image pattern selectivity, and they are not explained by convergence responses, pupil constrictions, head movements, or starting eye positions. Ocular position drifts have very rapid access to exogenous visual information.


Vision is a highly complex, active process. As we observe and interact with the world around us, we constantly use eye movements to capture the visual information we need. In fact, our eyes continue to make tiny, unconscious movements even when we try to fix our gaze on something. There are two main types of tiny eye movements. The first kind, so called microsaccades, are fast, microscopic flicks that happen every second or half-second. The other kind, termed drift, is a slower, gradual motion that takes place between microsaccades, or at any time when other eye movements are not happening. However, we know far less about drifts than about any other eye movements: both the reason why they occur and the brain mechanisms controlling them are still unclear. Many scientists think that drifts are largely random movements, without any set direction. However, eye drifts do sometimes align with other behaviours ­ for example, they can help compensate for small, subtle head movements ­ suggesting that drifts may not be completely random after all. Malevich, Buonocore and Hafed therefore set out to test the hypothesis that eye drifts could, under the right circumstances, in fact be highly directed movements. These experiments used precise sensors to track eye movements in macaque monkeys, which had been trained to fix their gaze on images or shapes (stimuli) presented on a screen. This revealed that presenting new stimuli, even for a few thousandths of a second, could repeatedly trigger drifts. This reaction also happened quickly, starting less than one hundredth of a second after presentation of the stimulus. Further tests, using different images, revealed that the drifts were not only simply reacting to any new stimuli but also appeared to be a partially selective response to specific types of images. These tended to have larger features and less fine detail. For example, a picture of a landscape with large swaths of sky or hilltops would much more reliably trigger the eye drifts than a finely detailed checkerboard pattern, with many small squares alternating between black and white. These results suggested that drifts, far from being random movements, could be another tool for the brain to process visual information. This work sheds new light on the potential role of eye movements in vision, and adds another layer of complexity to the question of how we see. Malevich et al. hope that this study will inspire further research into the brain mechanisms behind ocular drifts.


Assuntos
Fixação Ocular , Visão Ocular , Percepção Visual , Animais , Movimentos da Cabeça , Macaca mulatta , Tempo de Reação
20.
J Neurophysiol ; 123(6): 2217-2234, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374226

RESUMO

One of the most powerful excitatory synapses in the brain is formed by cerebellar climbing fibers, originating from neurons in the inferior olive, that wrap around the proximal dendrites of cerebellar Purkinje cells. The activation of a single olivary neuron is capable of generating a large electrical event, called "complex spike," at the level of the postsynaptic Purkinje cell, comprising of an initial large-amplitude spike followed by a long polyphasic tail of small-amplitude spikelets. Several ideas discussing the role of the cerebellum in motor control are centered on these complex spike events. However, these events, only occurring one to two times per second, are extremely rare relative to Purkinje cell "simple spikes" (standard sodium-potassium action potentials). As a result, drawing conclusions about their functional role has been very challenging. In fact, because standard spike sorting approaches cannot fully handle the polyphasic shape of complex spike waveforms, the only safe way to avoid omissions and false detections has been to rely on visual inspection by experts, which is both tedious and, because of attentional fluctuations, error prone. Here we present a deep learning algorithm for rapidly and reliably detecting complex spikes. Our algorithm, utilizing both action potential and local field potential signals, not only detects complex spikes much faster than human experts, but it also reliably provides complex spike duration measures similar to those of the experts. A quantitative comparison of our algorithm's performance to both classic and novel published approaches addressing the same problem reveals that it clearly outperforms these approaches.NEW & NOTEWORTHY Purkinje cell "complex spikes", fired at perplexingly low rates, play a crucial role in cerebellum-based motor learning. Careful interpretations of these spikes require manually detecting them, since conventional online or offline spike sorting algorithms are optimized for classifying much simpler waveform morphologies. We present a novel deep learning approach for identifying complex spikes, which also measures additional relevant neurophysiological features, with an accuracy level matching that of human experts yet with very little time expenditure.


Assuntos
Aprendizado Profundo , Fenômenos Eletrofisiológicos/fisiologia , Células de Purkinje/fisiologia , Potenciais de Ação/fisiologia , Animais , Macaca mulatta , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA