RESUMO
The aim of this study was the whole-genome analysis and assessment of the antimicrobial potential of bacterial isolates from honey harvested in one geographical location-the north of Poland. In total, 132 strains were derived from three honey samples, and the antimicrobial activity of CFAM (cell-free after-culture medium) was used as a criterion for strain selection and detailed genomic investigation. Two of the tested isolates (SZA14 and SZA16) were classified as Bacillus paralicheniformis, and one isolate (SZB3) as Bacillus subtilis based on their ANI and phylogenetic analysis relatedness. The isolates SZA14 and SZA16 were harvested from the same honey sample with a nucleotide identity of 98.96%. All three isolates have been found to be potential producers of different antimicrobial compounds. The secondary metabolite genome mining pipeline (antiSMASH) identified 14 gene cluster coding for non-ribosomal peptide synthetases (NRPs), polyketide synthases (PKSs), and ribosomally synthesized and post-translationally modified peptides (RiPPs) that are potential sources of novel antibacterials. The BAGEL4 analysis revealed the presence of nine putative gene clusters of interest in the isolates SZA14 and SZA16 (including the presence of six similar clusters present in both isolates, coding for the production of enterocin Nkr-5-3B, haloduracin-alpha, sonorensin, bottromycin, comX2, and lasso peptide), and four in B. subtilis isolate SZB3 (competence factor, sporulation-killing factor, subtilosin A, and sactipeptides). The outcomes of this study confirm that honey-derived Bacillus spp. strains can be considered potential producers of a broad spectrum of antimicrobial agents. KEY POINTS: ⢠Bacteria of the genus Bacillus are an important component of honey microbiota. ⢠Honey-derived Bacillus spp. strains are potential producers of new antimicrobials.
RESUMO
The main goal of this study was the evaluation of the probiotic potential of 10 Bacillus spp. strains isolated from 5 bee bread and 3 bee pollen samples. The antagonistic interaction with Staphylococcus aureus and Escherichia coli was a primary criterion for the preliminary selection of the isolates. Three out of ten strains-PY2.3 (isolated from pollen), BP20.15 and BB10.1 (both isolated from bee bread)-were found to be possible probiotic strains. All these strains are safe for humans (exhibiting [Formula: see text]-hemolytic activity) and meet all essential requirements for probiotics in terms of viability in the presence of bile salts and acid conditions, hydrophobicity, auto-aggregation, and co-aggregation with the cells of important human pathogenic bacteria. They also assimilate more than 30% of cholesterol after 24 h of incubation. These three isolates are resistant to penicillin but sensitive (or exhibit moderate resistance) to the other nine antibiotics tested herein. On the basis of whole-genome sequencing, BP20.15 and BB10.1 were classified as B. subtilis and PY2.3 as B. velezensis. Moreover, genomic analyses revealed that all these isolates are potential producers of different antimicrobial compounds, including bacteriocins and secondary metabolites. The outcomes of this study have proven that some of the Bacillus strains isolated from bee pollen or bee bread are potential probiotics.
RESUMO
Neutrophils synthesize four immune associated serine proteases: Cathepsin G (CTSG), Elastase (ELANE), Proteinase 3 (PRTN3) and Neutrophil Serine Protease 4 (NSP4). While previously considered to be immune modulators, overexpression of neutrophil serine proteases correlates with various disease conditions. Therefore, identifying novel small molecules that can potentially control or inhibit the proteolytic activity of these proteases is crucial to revert or temper the aggravated disease phenotype. To the best of our knowledge, although there is limited data for inhibitors of other neutrophil protease members, there is no previous clinical study of a synthetic small molecule inhibitor targeting NSP4. In this study, an integrated molecular modeling algorithm was performed within a virtual drug repurposing study to identify novel inhibitors for NSP4, using clinically approved and investigation drugs library (â¼8000 compounds). Based on our rigorous filtration, we found that following molecules Becatecarin, Iogulamide, Delprostenate and Iralukast are predicted to block the activity of NSP4 by interacting with core catalytic residues. The selected ligands were energetically more favorable compared to the reference molecule. The result of this study identifies promising molecules as potential lead candidates.