Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 18(2): 299-307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37824307

RESUMO

The development of prostheses and treatments for illnesses and recovery has recently been centered on hardware modeling for various delicate biological components, including the nervous system, brain, eyes, and heart. The retina, being the thinnest and deepest layer of the eye, is of particular interest. In this study, we employ the Nyquist-Based Approximation of Retina Rod Cell (NBAoRRC) approach, which has been adapted to utilize Look-Up Tables (LUTs) rather than original functions, to implement rod cells in the retina using cost-effective hardware. In modern mathematical models, numerous nonlinear functions are used to represent the activity of these cells. However, these nonlinear functions would require a substantial amount of hardware for direct implementation and may not meet the required speed constraints. The proposed method eliminates the need for multiplication functions and utilizes a fast, cost-effective rod cell device. Simulation results demonstrate the extent to which the proposed model aligns with the behavior of the primary rod cell model, particularly in terms of dynamic behavior. Based on the results of hardware implementation using the Field-Programmable Gate Arrays (FPGA) board Virtex-5, the proposed model is shown to be reliable, consume 30 percent less power than the primary model, and have reduced hardware resource requirements. Based on the results of hardware implementation using the reconfigurable FPGA board Virtex-5, the proposed model is reliable, uses 30% less power consumption than the primary model in the worth state of the set of approximation method, and has a reduced hardware resource requirement. In fact, using the proposed model, this reduction in the power consumption can be achieved. Finally, in this article, by using the LUT which is systematically sampled (Nyquist rate), we were able to remove all costly operators in terms of hardware (digital) realization and achieve very good results in the field of digital implementation in two scales of network and single neuron.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Simulação por Computador , Encéfalo/fisiologia , Retina
2.
IEEE Trans Biomed Circuits Syst ; 17(2): 246-256, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37018241

RESUMO

The accurate implementation of biological neural networks, which is one of the important areas of research in the field of neuromorphic, can be studied in the case of diseases, embedded systems, the study of the function of neurons in the nervous system, and so on. The pancreas is one of the main organs of human that performs important and vital functions in the body. One part of the pancreas is an endocrine gland and produces insulin, while another part is an exocrine gland that produces enzymes for digesting fats, proteins and carbohydrates. In this paper, an optimal digital hardware implementation for pancreatic ß-cells, which is the endocrine type, is presented. Since the equations of the original model include nonlinear functions, and the implementation of these functions results in greater use of hardware resources as well as deceleration, to achieve optimal implementation, we have approximated these nonlinear functions using the base-2 functions and LUT. The results of dynamic analysis and simulation show the accuracy of the proposed model compared to the original model. Analysis of the synthesis results of the proposed model on the Spartan-3 XC3S50 (5TQ144) reconfigurable board (FPGA) shows the superiority of the proposed model over the original model. These advantages include using fewer hardware resources, a performance almost twice as fast, and 19% less power consumption, than the original model.


Assuntos
Modelos Neurológicos , Neurônios , Humanos , Neurônios/fisiologia , Simulação por Computador , Computadores
3.
IEEE Trans Neural Syst Rehabil Eng ; 28(5): 1059-1068, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32175866

RESUMO

One of the appealing cases of the neuromorphic research area is the implementation of biological neural networks. The current study offers Multiplierless Hodgkin-Huxley Model (MHHM). This modified model may reproduce various spiking behaviors, like the biological HH neurons, with high accuracy. The presented modified model, in comparison to the original HH model, due to its exact similarity to the original model, has more top performances in the case of FPGA saving and more achievable frequency (speed-up). In this approach, the proposed model has a 69 % saving in FPGA resources and also the maximum frequency of 85 MHz that is more than other similar works. In this modification, all spiking behaviors of the original model have been generated with low error calculations. To validate the MHHM neuron, this proposed model has been implemented on digital hardware FPGA. This approach demonstrates that the original HH model and the proposed model have high similarity in terms of higher performance and digital hardware cost reduction.


Assuntos
Modelos Neurológicos , Neurônios , Computadores , Humanos
4.
IEEE Trans Biomed Circuits Syst ; 12(6): 1431-1439, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30207964

RESUMO

The human brain is composed of 1011 neurons with a switching speed of about 1 ms. Studying spiking neural networks, including the modeling, simulation, and implementation of the biological neuron models, helps us to learn about the brain and the related diseases, or to design more efficient bio-mimic processors and smarter robots. Such applications have made this part of neuromorphic research works very popular. In this paper, the Wilson neuron model has been implemented as an approximation of the Hodgkin-Huxley biological model that is adjusted for the efficient digital realization on the platforms. Results show that the proposed model can adequately reproduce neuron dynamical behaviors. The hardware implementation on the field-programmable gate array (FPGA) shows that our modifications on the Wilson original model imitate the biological behavior of neurons, besides using feasibility, targeting a low cost and high efficiency. The modifications raised a 15% speed-up compared with the original model. The mean normalized root-mean-square error, root-mean-square error, and the mean absolute error parameters are 6.43, 0.44, and 0.31, respectively.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Neurônios/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Humanos
5.
IEEE Trans Biomed Circuits Syst ; 12(6): 1422-1430, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30188839

RESUMO

Fast speed and a high accuracy implementation of biological plausible neural networks are vital key objectives to achieve new solutions to model, simulate and cure the brain diseases. Efficient hardware implementation of spiking neural networks is a significant approach in biological neural networks. This paper presents a multiplierless noisy Izhikevich neuron (MNIN) model, which is used for the digital implementation of biological neural networks in large scale. Simulation results show that the MNIN model reproduces the same operations of the original noisy Izhikevich neuron. The proposed model has a low-cost hardware implementation property compared with the original neuron model. The field-programmable gate array realization results demonstrated that the MNIN model follows the different spiking patterns appropriately.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Redes Neurais de Computação
6.
IEEE Trans Biomed Circuits Syst ; 11(1): 117-127, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27662685

RESUMO

Glial cells, also known as neuroglia or glia, are non-neuronal cells providing support and protection for neurons in the central nervous system (CNS). They also act as supportive cells in the brain. Among a variety of glial cells, the star-shaped glial cells, i.e., astrocytes, are the largest cell population in the brain. The important role of astrocyte such as neuronal synchronization, synaptic information regulation, feedback to neural activity and extracellular regulation make the astrocytes play a vital role in brain disease. This paper presents a modified complete neuron-astrocyte interaction model that is more suitable for efficient and large scale biological neural network realization on digital platforms. Simulation results show that the modified complete interaction model can reproduce biological-like behavior of the original neuron-astrocyte mechanism. The modified interaction model is investigated in terms of digital realization feasibility and cost targeting a low cost hardware implementation. Networking behavior of this interaction is investigated and compared between two cases: i) the neuron spiking mechanism without astrocyte effects, and ii) the effect of astrocyte in regulating the neurons behavior and synaptic transmission via controlling the LTP and LTD processes. Hardware implementation on FPGA shows that the modified model mimics the main mechanism of neuron-astrocyte communication with higher performance and considerably lower hardware overhead cost compared with the original interaction model.


Assuntos
Astrócitos/citologia , Rede Nervosa , Neurônios/citologia , Transmissão Sináptica , Encéfalo/fisiologia , Humanos
7.
IEEE Trans Biomed Circuits Syst ; 10(2): 518-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26390499

RESUMO

The implementation of biological neural networks is a key objective of the neuromorphic research field. Astrocytes are the largest cell population in the brain. With the discovery of calcium wave propagation through astrocyte networks, now it is more evident that neuronal networks alone may not explain functionality of the strongest natural computer, the brain. Models of cortical function must now account for astrocyte activities as well as their relationships with neurons in encoding and manipulation of sensory information. From an engineering viewpoint, astrocytes provide feedback to both presynaptic and postsynaptic neurons to regulate their signaling behaviors. This paper presents a modified neural glial interaction model that allows a convenient digital implementation. This model can reproduce relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system (CNS). Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte constructed by connecting a two coupled FitzHugh Nagumo (FHN) neuron model to an implementation of the proposed astrocyte model using neuron-astrocyte interactions. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed neuron astrocyte model, with significantly low hardware cost, can mimic biological behavior such as the regulation of postsynaptic neuron activity and the synaptic transmission mechanisms.


Assuntos
Modelos Neurológicos , Animais , Astrócitos/fisiologia , Retroalimentação Fisiológica , Humanos , Neuroglia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA