Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Physiol ; 6: 261, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441680

RESUMO

A continuous assessment of ingested food in the gastric lumen is essential for fine-tuning the digestive activities, including the secretion of the regulatory hormones such as gastrin. It has been proposed that G-cells may be able to sense the amount of ingested proteins and adjust the secretion of gastrin accordingly. Our previous studies have shown that G-cells express suitable receptor types, most notably the peptone-receptor GPR92 and the amino acid receptors GPRC6A and CaSR; however, their relative importance remained unclear. To determine the relative quantity of each receptor type, individual G-cells isolated from the transgenic mouse line mGas-EGFP were analyzed by means of a Liquid Chromatography Tandem-Mass Spectrometry (LC-MS/MS) procedure. The results indicate that the relative amount of receptor protein for GPR92 was much higher than for the receptor types GPRC6A and CaSR. These findings support the notion that the peptone-receptor GPR92 may be particularly relevant for sensing partially digested protein products. This view was supported by the finding that a high-protein diet affected the expression level of the peptone-receptor GPR92 in the gastric antrum as well as in the circumvallate papillae.

2.
Histochem Cell Biol ; 140(2): 137-45, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23436159

RESUMO

The ingestion of dietary protein is of vital importance for the maintenance of fundamental physiological processes. The taste modality umami, with its prototype stimulus, glutamate, is considered to signal the protein content of food. Umami was thought to be mediated by the heterodimeric amino acid receptor, T1R1 + T1R3. Based on knockout studies, additional umami receptors are likely to exist. In addition to amino acids, certain peptides can also elicit and enhance umami taste suggesting that protein breakdown products may contribute to umami taste. The recently deorphanized peptone receptor, GPR92 (also named GPR93; LPAR5), is expressed in gastric enteroendocrine cells where it responds to protein hydrolysates. Therefore, it was of immediate interest to investigate if the receptor GPR92 is expressed in gustatory sensory cells. Using immunohistochemical approaches we found that a large population of cells in murine taste buds was labeled with an GPR92 antibody. A molecular phenotyping of GPR92 cells revealed that the vast majority of GPR92-immunoreactive cells express PLCß2 and can therefore be classified as type II cells. More detailed analyses have shown that GPR92 is expressed in the majority of T1R1-positive taste cells. These results indicate that umami cells may respond not only to amino acids but also to peptides in protein hydrolysates.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Animais , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Front Physiol ; 3: 65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22514536

RESUMO

Monitoring the luminal content in the stomach is of vital importance for adjusting the gastric activities, including the release of gastric hormones such as gastrin. Our previous studies have shown that in mice the gastrin-secreting G-cells express receptor types which are responsive to amino acids. Since the pig is considered as more suitable model for studying gastro-physiological aspects relevant for men, in this study we have analyzed the distribution of G-cells and D-cells in the gastric antrum of men, swine, and mouse and the expression of receptor types which may render these cells responsiveness to protein breakdown products. The results indicate that the number of G-cells per antral invagination was significantly higher in swine and human compared to mice and also the distribution pattern of G-cells differed between the species. The molecular phenotyping revealed that the receptors GPRC6A and CaSR were also expressed in G-cells and in a subpopulation of D-cells from swine and men. As an additional receptor type, the peptone-receptor GPR92, was found to be expressed in G-cells and a subpopulation of D-cells; this receptor type may be particular suitable for sensing protein breakdown products and thus be a key element to adjust the activity of G-cells and D-cells according to the progress of the digestive processes in the stomach. In search for elements of an intracellular signaling cascade it was found that G-cells express the G-protein subunit Gαq as well as the phospholipase C subtype PLCß3; in contrast, D-cells expressed the subtype PLCß2 and neither Gαq. These results indicate that there are significant species differences concerning the number and distribution pattern, but not concerning the molecular phenotype of the gastric endocrine cells. However, G-cells and D-cells significantly differ from each other regarding the repertoire of receptors and signaling elements.

4.
J Mol Histol ; 42(4): 355-64, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21750971

RESUMO

Sensing protein breakdown products in the luminal content is of particular importance for the regulation of digestive activities in the stomach which are mainly governed by gastric hormones. The molecular basis for tuning the release of hormones according to the protein content is still elusive. In this study we have analysed the murine stomach for candidate nutrient receptors. As a promising candidate we have concentrated on the broadly tuned amino acid receptor GPRC6A. Expression of GPRC6A could be demonstrated in different regions of the murine stomach; especially in the gastric antrum. Using immunohistochemical approaches, a large cell population of GPRC6A-positive cells was visualized in the basal half of the antral gastric mucosa. Molecular phenotyping of GPRC6A-immunoreactive cells revealed that most of them contained the peptide hormone gastrin. A small population turned out to be immunoreactive for somatostatin. In search for additional amino acid receptors in antral gastric mucosa, we obtained evidence for expression of the gustatory amino acid receptor subunit T1R3 and the calcium-sensing receptor CaSR. Many CaSR-cells were found in the gastric antrum and most of them also contained gastrin; very similar to GPRC6A-cells. In contrast, T1R3 was found only in a small population of gastrin-negative cells. The finding that GPRC6A-and CaSR-receptors are both expressed in many if not all gastrin cells strongly suggests that both receptor types are co-expressed in the same cells, where they could form heterodimers providing a unique response spectrum of these cells.


Assuntos
Células Enteroendócrinas/metabolismo , Mucosa Gástrica/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Mucosa Gástrica/citologia , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estômago/anatomia & histologia , Estômago/citologia
5.
Eur J Neurosci ; 32(11): 1813-24, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21059112

RESUMO

Olfactory sensory neurons (OSNs) which express distinct odorant receptor (OR) genes are spatially arranged within the mouse olfactory epithelium. Towards an understanding of the mechanisms which determine these patterns, representative OR genes which are typically expressed in the unique central patch of the epithelium were investigated. Inside the patch, numerous OSNs which initially selected a representative gene from this OR group finally expressed another gene from the group, indicating that OSNs inside the patch 'switch' between these genes. If an OSN successively chose genes from the same OR gene cluster, these originated from the same parental chromosome. A deletion of the olfactory cyclic nucleotide-gated ion channel altered the distribution pattern of distinct OSN populations; they were no longer located exclusively inside the patch. Together, the results indicate that OSNs inside the patch initially sample several OR genes for expression; for their correct patterning in the OE, odor-induced activity appears to play a critical role.


Assuntos
Regulação da Expressão Gênica , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Isoformas de Proteínas/genética , Receptores Odorantes/genética , Olfato/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Família Multigênica , Bulbo Olfatório/citologia , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/citologia , Isoformas de Proteínas/metabolismo , Receptores Odorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA