Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Curr Issues Mol Biol ; 45(7): 5558-5574, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37504267

RESUMO

Despite the existence of effective drugs used to treat inflammatory bowel disease (IBD), many patients fail to respond or lose response over time. Further, many drugs can carry serious adverse effects, including increased risk of infections and malignancies. Saffron (Crocus sativus) has been reported to have anti-inflammatory properties. Its protective role in IBD and how the microbiome and metabolome play a role has not been explored extensively. We aimed to establish whether saffron treatment modulates the host microbiome and metabolic profile in experimental colitis. Colitis was induced in C57BL/6 mice with 3% DSS and treated with either saffron in a dose of 20 mg/kg body weight or vehicle through daily gavage. On day 10, stool pellets from mice were collected and analyzed to assess saffron's effect on fecal microbiota and metabolites through 16S rRNA sequencing and untargeted primary metabolite analysis. Saffron treatment maintained gut microbiota homeostasis by counter-selecting pro-inflammatory bacteria and maintained Firmicutes/Bacteroides ratio, which was otherwise disturbed by DSS treatment. Several metabolites (uric acid, cholesterol, 2 hydroxyglutaric acid, allantoic acid, 2 hydroxyhexanoic acid) were altered significantly with saffron treatment in DSS-treated mice, and this might play a role in mediating saffron's colitis-mitigating effects. These data demonstrate saffron's therapeutic potential, and its protective role is modulated by gut microbiota, potentially acting through changes in metabolites.

2.
Clin Nutr ESPEN ; 47: 70-77, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35063245

RESUMO

BACKGROUND & AIMS: Probiotics contain living microorganisms consumed for their putative benefits on the intestinal microbiota and general health and a concept is emerging to use probiotic as a therapeutic intervention to reduce proton pump inhibitors (PPIs) negative effects, but data is lacking. The use of PPIs can result in disordered gut microbiota, leading to a risk of enteric infections. PPIs are frequently prescribed in the general practice setting for gastroesophageal reflux disease (GERD), peptic ulcer disease, and related conditions. Despite the availability and widespread use of probiotics and acid-suppressing medications, the effect of PPIs-induced gastric acid suppression on the survival and colonization of probiotics bacterial species is currently unclear. We hypothesized that gastric acid suppression may improve intestinal colonization of probiotics bacterial species and probiotic intervention may have a potential role in mitigating untoward effects of PPI. METHODS: In a randomized, double-blind, placebo-controlled study, healthy subjects were given either proton pump inhibitor (PPI, n = 15) or placebo (n = 15) over 6 weeks. All subjects then consumed multi-strain probiotics from weeks 2-6. Thirty participants (10 males, 20 females, age range: 18-56 years) were enrolled in the study. Shotgun metagenomic sequencing and untargeted metabolomics analyses were performed on stool samples collected at week 0, 2, and 6. RESULTS: Short term PPI treatment increased the microbial abundance of Streptococcaceae (p = 0.004), Leuconostacaceae (p = 0.001), and Pasteurellaceae (p = 0.020) at family level and corresponding genus levels. The metabolomic analysis of the stools revealed a change in 10 metabolites where Gly Arg Val and phenylacetic acid were consistently increased compared to the baseline. Probiotic intervention inhibited PPI-induced microbial changes such as a decrease in Leuconostacaceae family (p = 0.01) and led to an increase in metabolite 1H-Indole-4-carbaldehyde. Notably, PPI enhanced the colonization of certain probiotic bacterial species like Streptococcus thermophilus (p < 0.05) along with other species present in the multi-strain probiotic. CONCLUSION: Acid suppression enhanced certain probiotic associated bacterial colonization and probiotics in turn suppressed PPI-mediated intestinal microbial alterations. Thus, probiotics in combination with PPI might be a beneficial strategy that allows probiotic colonization and suppress PPI-induced microbial perturbations. CLINICAL TRIALS. GOV, NUMBER: NCT03327051.


Assuntos
Refluxo Gastroesofágico , Microbioma Gastrointestinal , Probióticos , Adolescente , Adulto , Feminino , Ácido Gástrico , Refluxo Gastroesofágico/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Bomba de Prótons/efeitos adversos , Adulto Jovem
3.
Dig Dis Sci ; 67(7): 2922-2935, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34275090

RESUMO

BACKGROUND: People with inflammatory bowel disease (IBD) including ulcerative colitis are at risk for colorectal cancer. Despite available effective drugs used to treat IBD, many patients fail or lose response over time with some displaying drug-induced adverse events. Saffron (Crocus sativus) has been reported to have anti-inflammatory properties. Its protective role in IBD has not been explored extensively. AIM: To establish whether saffron treatment alleviates inflammation in experimental colitis. METHODS: Colitis was induced in C57BL/6 mice with 3% DSS and treated with either saffron doses (7.5, 15, 20, 25 mg/kg body weight) or vehicle through daily gavage. On day 11, mice were euthanized and analyzed for gross and microscopic inflammation. Distal colon segments were collected for mRNA and protein expression of HO-1 protein and GPX2, (the downstream targets of NRF-2). Nrf-2 translocation from cytosol to nucleus was confirmed by immunofluorescence, and further Nrf-2 protein expression in nuclear and cytosolic fraction of colon was analyzed by immunoblot. Immune cells were isolated from the lamina propria of mouse colon for flow cytometry-based immunophenotyping. Colitis was also induced in C57BL/6 Ahr knockout and wild type mice to explore the involvement of Ahr-dependent pathways in saffron's protective effect(s). The therapeutic effect of saffron was further validated in another TNBS model of colitis. RESULTS: Saffron 20 mg/kg body weight showed improved colon gross and histology features and led to better body weight, colon length, histology score, and reduced disease activity index (DAI). Saffron significantly decreased pro-inflammatory macrophages (M1), while increasing anti-inflammatory macrophages (M2) and IL10 + dendritic cells. Saffron treatment also enhanced CD3 + T and CD3 + CD8 + T cells followed by increase in different CD3 + CD4 + T cells subsets like CD25 + T cells, FoxP3 + CD25 + regulatory T cells, and CD4 + FOXP3 + CD25-regulatory T cells. Immunoblot analysis showed a significant increase in HO-1/GPX2 protein expression. With saffron treatment, Nrf-2 translocation into nucleus from cytosol also supports the involvement of Nrf-2 and its downstream targets in the protective effect of saffron. Further, we demonstrated that saffron in part exert anti-inflammatory effect through activation of aryl hydrocarbon receptor (AhR)-nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent pathways. CONCLUSION: These data demonstrate saffron's therapeutic potential and its protective role in part via Ahr/Nrf-2 pathways and regulatory innate and adaptive immune cells.


Assuntos
Colite , Crocus , Doenças Inflamatórias Intestinais , Animais , Anti-Inflamatórios/uso terapêutico , Peso Corporal , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/prevenção & controle , Colo/patologia , Crocus/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Humanos , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
4.
J Crohns Colitis ; 15(12): 1980-1990, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34180967

RESUMO

BACKGROUND AND AIMS: Vitamin D downregulates the in vitro expression of the gut-tropic integrin α4ß7 on immune cells. The clinical relevance of this finding in patients with inflammatory bowel disease [IBD] is unclear. We tested the hypothesis that vitamin D is associated with α4ß7 immunophenotypes and risk of vedolizumab [anti-α4ß7] failure in IBD. METHODS: We performed single-cell immunophenotyping of peripheral and intestinal immune cells using mass cytometry [CyTOF] in vedolizumab-naïve patients with IBD [N = 48]. We analysed whole-genome mucosal gene expression [GSE73661] from GEMINI I and GEMINI long-term safety [LTS] to determine the association between vitamin D receptor [VDR] and integrin alpha-4 [ITGA4] and beta-7 [ITGB7] genes. We estimated the odds of vedolizumab failure with low pre-treatment vitamin D in a combined retrospective and prospective IBD cohort [N = 252] with logistic regression. RESULTS: Immunophenotyping revealed that higher 25[OH]D was associated with decreased α4ß7+ peripheral blood mononuclear cells [R = -0.400, p <0.01] and α4ß7+ intestinal leukocytes [R = -0.538, p = 0.03]. Serum 25[OH]D was inversely associated with α4ß7+ peripheral B cells and natural killer [NK] cells and α4ß7+ intestinal B cells, NK cells, monocytes, and macrophages. Mucosal expression of VDR was inversely associated with ITGA4 and ITGB7 expression. In multivariate analysis, 25[OH]D <25 ng/mL was associated with increased vedolizumab primary non-response during induction (odds ratio [OR] 26.10, 95% confidence interval [CI] 14.30-48.90, p <0.001) and failure at 1-year follow-up [OR 6.10, 95% CI 3.06-12.17, p <0.001]. CONCLUSIONS: Low serum 25[OH]D is associated with α4ß7+ immunophenotypes and predicts future vedolizumab failure in patients with IBD. PODCAST: This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Fármacos Gastrointestinais/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Integrinas/imunologia , Vitamina D/sangue , Adulto , Feminino , Humanos , Imunofenotipagem , Doenças Inflamatórias Intestinais/sangue , Leucócitos Mononucleares/imunologia , Masculino , Falha de Tratamento
5.
Mucosal Immunol ; 14(4): 852-861, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33674764

RESUMO

GPR15 is a chemoattractant receptor that facilitates colon homing of regulatory and effector CD4+ T cells in health and colitis. The molecular mechanisms that control GPR15 expression are not fully known. Here we report the presence of two highly conserved aryl hydrocarbon receptor (AHR) binding sequences in a 3' enhancer of GPR15, leading us to investigate AHR function in regulating GPR15 expression. Using luciferase reporter assays, we show that AHR activation increased GPR15 expression and requires both the AHR binding sites. Consistent with a transcriptional regulatory role, treatment with AHR agonists induce GPR15 expression on human CD4+ T cells. Using AHR-deficient mice, we demonstrate that the lack of AHR signaling drastically reduces GPR15 expression on effector/memory and Foxp3+ CD4+ T cells. In mixed bone marrow chimeras of AHR-deficient and wildtype cells, GPR15 expression was similarly diminished on AHR-deficient CD4+ effector/memory and regulatory T cells in the colon and small intestine. Furthermore, administration of AHR agonists upregulated GPR15 expression on CD4+ effector/memory T cells and increased their homing capability, especially to the colon. Collectively, our studies reveal a novel function of the AHR in regulation of GPR15 expression and increased colon trafficking of CD4+ T cells expressing GPR15.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica , Receptores de Hidrocarboneto Arílico , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Fatores de Transcrição Forkhead , Fator de Transcrição GATA3/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Camundongos
6.
Cell Host Microbe ; 27(4): 659-670.e5, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32101703

RESUMO

Secondary bile acids (SBAs) are derived from primary bile acids (PBAs) in a process reliant on biosynthetic capabilities possessed by few microbes. To evaluate the role of BAs in intestinal inflammation, we performed metabolomic, microbiome, metagenomic, and transcriptomic profiling of stool from ileal pouches (surgically created resevoirs) in colectomy-treated patients with ulcerative colitis (UC) versus controls (familial adenomatous polyposis [FAP]). We show that relative to FAP, UC pouches have reduced levels of lithocholic acid and deoxycholic acid (normally the most abundant gut SBAs), genes required to convert PBAs to SBAs, and Ruminococcaceae (one of few taxa known to include SBA-producing bacteria). In three murine colitis models, SBA supplementation reduces intestinal inflammation. This anti-inflammatory effect is in part dependent on the TGR5 bile acid receptor. These data suggest that dysbiosis induces SBA deficiency in inflammatory-prone UC patients, which promotes a pro-inflammatory state within the intestine that may be treated by SBA restoration.


Assuntos
Ácidos e Sais Biliares/metabolismo , Bolsas Cólicas/microbiologia , Disbiose/complicações , Fezes/microbiologia , Receptores Acoplados a Proteínas G/metabolismo , Polipose Adenomatosa do Colo/microbiologia , Animais , Ácidos e Sais Biliares/farmacologia , Colite/etiologia , Colite/microbiologia , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/etiologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Metagenoma , Camundongos , Microbiota , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Ruminococcus/isolamento & purificação , Transcriptoma
7.
J Immunol ; 204(1): 68-77, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31801814

RESUMO

Extremely preterm neonates are particularly susceptible to infections, likely because of severely impaired immune function. However, little is known on the composition of the T cell compartment in early life in this vulnerable population. We conducted a comprehensive phenotypic flow cytometry-based longitudinal analysis of the peripheral conventional T cell compartment of human extremely low gestational age neonates (ELGAN) with extremely low birth weight (ELBW; <1000 g) participating in a randomized placebo-controlled study of probiotic supplementation. PBMCs from ELGAN/ELBW neonates were collected at day 14, day 28, and postmenstrual week 36. Comparisons were made with full-term 14-d-old neonates. Total CD4+ and CD8+ T cell frequencies were markedly lower in the preterm neonates. The reduction was more pronounced among the CD8+ population, resulting in an increased CD4/CD8 ratio. The preterm infants were also more Th2 skewed than the full-term infants. Although the frequency of regulatory T cells seemed normal in the ELGAN/ELBW preterm neonates, their expression of the homing receptors α4ß7, CCR4, and CCR9 was altered. Notably, ELGAN/ELBW infants developing necrotizing enterocolitis before day 14 had higher expression of CCR9 in CD4+T cells at day 14. Chorioamnionitis clearly associated with reduced T regulatory cell frequencies and functional characteristics within the preterm group. Finally, probiotic supplementation with Lactobacillus reuteri did not impose any phenotypic changes of the conventional T cell compartment. In conclusion, notable immaturities of the T cell compartment in ELGAN/ELBW neonates may at least partially explain their increased susceptibility to severe immune-mediated morbidities.


Assuntos
Linfócitos T/imunologia , Método Duplo-Cego , Humanos , Lactente Extremamente Prematuro , Estudos Prospectivos
8.
Nat Commun ; 10(1): 2686, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217423

RESUMO

Inflammatory bowel disease (IBD) includes Crohn's disease and ulcerative colitis. Each disease is characterized by a diverse set of potential manifestations, which determine patients' disease phenotype. Current understanding of phenotype determinants is limited, despite increasing prevalence and healthcare costs. Diagnosis and monitoring of disease requires invasive procedures, such as endoscopy and tissue biopsy. Here we report signatures of heterogeneity between disease diagnoses and phenotypes. Using mass cytometry, we analyze leukocyte subsets, characterize their function(s), and examine gut-homing molecule expression in blood and intestinal tissue from healthy and/or IBD subjects. Some signatures persist in IBD despite remission, and many signatures are highly represented by leukocytes that express gut trafficking molecules. Moreover, distinct systemic and local immune signatures suggest patterns of cell localization in disease. Our findings highlight the importance of gut tropic leukocytes in circulation and reveal that blood-based immune signatures differentiate clinically relevant subsets of IBD.


Assuntos
Citometria de Fluxo/métodos , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Leucócitos/imunologia , Espectrometria de Massas/métodos , Adulto , Idoso , Biópsia , Separação Celular , Colonoscopia , Feminino , Humanos , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Intestinos/imunologia , Intestinos/patologia , Masculino , Pessoa de Meia-Idade , Exacerbação dos Sintomas , Adulto Jovem
10.
Front Immunol ; 8: 1699, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250074

RESUMO

The intestinal microbiota influences immune maturation during childhood, and is implicated in early-life allergy development. However, to directly study intestinal microbes and gut immune responses in infants is difficult. To investigate how different types of early-life gut microbiota affect immune development, we collected fecal samples from children with different allergic heredity (AH) and inoculated germ-free mice. Immune responses and microbiota composition were evaluated in the offspring of these mice. Microbial composition in the small intestine, the cecum and the colon were determined by 16S rRNA sequencing. The intestinal microbiota differed markedly between the groups of mice, but only exposure to microbiota associated with AH and known future allergy in children resulted in a T helper 17 (Th17)-signature, both systemically and in the gut mucosa in the mouse offspring. These Th17 responses could be signs of a particular microbiota and a shift in immune development, ultimately resulting in an increased risk of allergy.

12.
Immun Inflamm Dis ; 4(3): 315-26, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27621814

RESUMO

INTRODUCTION: In early-life, the immature mucosal barrier allows contact between the gut microbiota and the developing immune system. Due to their strategic location and their ability to sample luminal antigen, dendritic cells (DC) play a central role in the interaction of microbes and immune cells in the gut. Here, we investigated how two bacteria associated with opposite immune profiles in children, that is, Lactobacillus (L.) reuteri and Staphylococcus (S.) aureus, influenced the differentiation of monocytes in vitro as well how the generated DC impacted T cell responses. METHODS: We exposed monocyte cultures to cell-free supernatants (CFS) from these bacteria during their differentiation to DC. RESULTS: The presence of L. reuteri-CFS during DC differentiation resulted in DC with a more mature phenotype, in terms of up-regulated surface markers (HLA-DR, CD86, CD83, CCR7) and enhanced cytokine production (IL6, IL10, and IL23), but had a reduced phagocytic capacity compared with non-treated monocyte-derived DC (Mo-DC). However, upon LPS activation, L. reuteri-CFS-generated DC displayed a more regulated phenotype than control Mo-DC with notable reduction of cytokine responses both at mRNA and protein levels. In contrast, S. aureus-CFS-generated DC were more similar to control Mo-DC both without and after LPS stimulation, but they were still able to induce responses in autologous T cells, in the absence of further T cell stimulation. CONCLUSIONS: We show that bacterial signals during DC differentiation have a profound impact on DC function and possibly also for shaping the T cell pool.

13.
Front Microbiol ; 7: 437, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065990

RESUMO

Due to a global increase in the range and number of infections caused by multi-resistant bacteria, phage therapy is currently experiencing a resurgence of interest. However, there are a number of well-known concerns over the use of phages to treat bacterial infections. In order to address concerns over safety and the poorly understood pharmacokinetics of phages and their associated cocktails, immunological characterization is required. In the current investigation, the immunogenicity of four distinct phages (taken from the main families that comprise the Caudovirales order) and their interaction with donor derived peripheral blood mononuclear cells and immortalized cell lines (HT-29 and Caco-2 intestinal epithelial cells) were investigated using standard immunological techniques. When exposed to high phage concentrations (10(9) PFU/well), cytokine driven inflammatory responses were induced from all cell types. Although phages appeared to inhibit the growth of intestinal epithelial cell lines, they also appear to be non-cytotoxic. Despite co-incubation with different cell types, phages maintained a high killing efficiency, reducing extended-spectrum beta-lactamase-producing Escherichia coli numbers by 1-4 log10 compared to untreated controls. When provided with a suitable bacterial host, phages were also able to actively reproduce in the presence of human cells resulting in an approximately 2 log10 increase in phage titer compared to the initial inoculum. Through an increased understanding of the complex pharmacokinetics of phages, it may be possible to address some of the safety concerns surrounding phage preparations prior to creating new therapeutic strategies.

14.
Front Immunol ; 7: 96, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014275

RESUMO

Lactobacilli are widely used as probiotics with beneficial effects on infection-associated diarrhea, but also used in clinical trials of e.g., necrotizing enterocolitis and inflammatory bowel diseases. The possibility of using probiotic metabolic products, so-called postbiotics, is desirable as it could prevent possible side effects of live bacteria in individuals with a disturbed gut epithelial barrier. Here, we studied how Lactobacillus reuteri DSM 17938 cell-free supernatant (L. reuteri-CFS) influenced retinoic acid (RA)-driven mucosal-like dendritic cells (DC) and their subsequent effect on T regulatory cells (Treg) in vitro. RA clearly imprinted a mucosal-like DC phenotype with higher IL10 production, increased CD103 and CD1d expression, and a downregulated mRNA expression of several inflammatory-associated genes (NFκB1, RELB, and TNF). Treatment with L. reuteri-CFS further influenced the tolerogenic phenotype of RA-DC by downregulating most genes involved in antigen uptake, antigen presentation, and signal transduction as well as several chemokine receptors, while upregulating IL10 production. L. reuteri-CFS also augmented CCR7 expression on RA-DC. In cocultures, RA-DC increased IL10 and FOXP3 expression in Treg, but pre-treatment with L. reuteri-CFS did not further influence the Treg phenotype. In conclusion, L. reuteri-CFS modulates the phenotype and function of mucosal-like DC, implicating its potential application as postbiotic.

16.
PLoS One ; 8(10): e77893, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205015

RESUMO

There seems to be a correlation between early gut microbiota composition and postnatal immune development. Alteration in the microbial composition early in life has been associated with immune mediated diseases, such as autoimmunity and allergy. We have previously observed associations between the presence of lactobacilli and Staphylococcus (S.) aureus in the early-life gut microbiota, cytokine responses and allergy development in children. Consistent with the objective to understand how bacteria modulate the cytokine response of intestinal epithelial cell (IEC) lines and immune cells, we exposed IEC lines (HT29, SW480) to UV-killed bacteria and/or culture supernatants (-sn) from seven Lactobacillus strains and three S. aureus strains, while peripheral blood mononuclear cells (PBMC) and cord blood mononuclear cells (CBMC) from healthy donors were stimulated by bacteria-sn or with bacteria conditioned IEC-sn. Although the overall IEC response to bacterial exposure was characterized by limited sets of cytokine and chemokine production, S. aureus 161:2-sn induced an inflammatory response in the IEC, characterized by CXCL1/GROα and CXCL8/IL-8 production, partly in a MyD88-dependent manner. UV-killed bacteria did not induce a response in the IEC line, and a combination of both UV-killed bacteria and the bacteria-sn had no additive effect to that of the supernatant alone. In PBMC, most of the Lactobacillus-sn and S. aureus-sn strains were able to induce a wide array of cytokines, but only S. aureus-sn induced the T-cell associated cytokines IL-2, IL-17 and IFN-γ, independently of IEC-produced factors, and induced up regulation of CTLA-4 expression and IL-10 production by T-regulatory cells. Notably, S. aureus-sn-induced T-cell production of IFN- γ and IL-17 was down regulated by the simultaneous presence of any of the different Lactobacillus strains, while the IEC CXCL8/IL-8 response was unaltered. Thus these studies present a possible role for lactobacilli in induction of immune cell regulation, although the mechanisms need to be further elucidated.


Assuntos
Mediadores da Inflamação/metabolismo , Mucosa Intestinal/imunologia , Lactobacillus/fisiologia , Leucócitos Mononucleares/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Linfócitos T/imunologia , Adulto , Criança , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Lactobacillus/efeitos da radiação , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/efeitos da radiação , Linfócitos T/metabolismo , Raios Ultravioleta
17.
PLoS One ; 7(11): e49315, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185315

RESUMO

Microbial exposure early in life influences immune maturation and potentially also the development of immune-mediated disease. Here we studied early-life gut colonization in relation to cytokine responses at two years of age. Fecal samples were collected from infants during the first two months of life. DNA was extracted from the fecal samples and Bifidobacterium (B.) adolescentis, B. breve, B. bifidum, a group of lactobacilli (L. casei, L. paracasei and L. rhamnosus) as well as Staphylococcus (S.) aureus were detected with real time PCR. Peripheral mononuclear cells were stimulated with phytohaemagglutinin (PHA) and numbers of IL-4-, IL-10- and IFN-γ secreting cells were evaluated using ELISpot. We further stimulated peripheral blood mononuclear cells with bacterial supernatants in vitro and assessed the IL-4-, IL-10- and IFN-γ inducing capacity by flow cytometry and ELISA. Early S. aureus colonization associated with higher numbers of IL-4- (p = 0.022) and IL-10 (p = 0.016) producing cells at two years of age. In contrast to colonization with S. aureus alone, co-colonization with lactobacilli associated with suppression of IL-4- (p = 0.004), IL-10- (p = 0.004) and IFN-γ (p = 0.034) secreting cells. In vitro stimulations of mononuclear cells with bacterial supernatants supported a suppressive role of L. rhamnosus GG on S. aureus-induced cytokine responses. We demonstrate that the early gut colonization pattern associates with the PHA-induced cytokine profile at two years of age and our in vitro findings support that specific bacterial species influence the T helper cell subsets. This suggests that dysbiosis in the early microbiota may modulate the risk of developing inflammatory conditions like allergy.


Assuntos
Bactérias/metabolismo , Trato Gastrointestinal/microbiologia , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-4/biossíntese , Adulto , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Contagem de Células , Pré-Escolar , Contagem de Colônia Microbiana , Humanos , Lactente , Recém-Nascido , Interferon gama/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Fito-Hemaglutininas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA