Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 11(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37512915

RESUMO

Clostridioides difficile poses an ongoing threat as a cause of gastrointestinal disease in humans and animals. Traditionally considered a human healthcare-related disease, increases in community-associated C. difficile infection (CDI) and growing evidence of inter-species transmission suggest a wider perspective is required for CDI control. In horses, C. difficile is a major cause of diarrhoea and life-threatening colitis. This study aimed to better understand the epidemiology of CDI in Australian horses and provide insights into the relationships between horse, human and environmental strains. A total of 752 faecal samples from 387 Western Australian horses were collected. C. difficile was isolated from 104 (30.9%) horses without gastrointestinal signs and 19 (37.8%) with gastrointestinal signs. Of these, 68 (55.3%) harboured one or more toxigenic strains, including C. difficile PCR ribotypes (RTs) 012 (n = 14), 014/020 (n = 10) and 087 (n = 7), all prominent in human infection. Whole-genome analysis of 45 strains identified a phylogenetic cluster of 10 closely related C. difficile RT 012 strains of equine, human and environmental origin (0-62 SNP differences; average 23), indicating recent shared ancestry. Evidence of possible clonal inter-species transmission or common-source exposure was identified for a subgroup of three horse and one human isolates, highlighting the need for a One Health approach to C. difficile surveillance.

2.
Microbiol Resour Announc ; 12(5): e0023923, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37098912

RESUMO

Clostridioides (Clostridium) difficile in the environment is thought to contribute to C. difficile infection in community settings. Here, we provide complete genome assemblies for two esculin hydrolysis-negative strains of C. difficile that were isolated from soils in Western Australia; the strains produce white colonies on chromogenic media and belong to evolutionarily divergent clade C-III.

3.
Environ Microbiol ; 24(3): 985-997, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35001483

RESUMO

Clostridioides (Clostridium) difficile presents a significant health risk to humans and animals. The complexity of the bacterial-host interaction affecting pathogenesis and disease development creates an ongoing challenge for epidemiological studies, control strategies and prevention planning. The recent emergence of human disease caused by strains of C. difficile found in animals adds to mounting evidence that C. difficile infection (CDI) may be a zoonosis. In equine populations, C. difficile is a known cause of diarrhoea and gastrointestinal inflammation, with considerable mortality and morbidity. This has a significant impact on both the well-being of the animal and, in the case of performance and production animals, it may have an adverse economic impact on relevant industries. While C. difficile is regularly isolated from horses, many questions remain regarding the impact of asymptomatic carriage as well as optimization of diagnosis, testing and treatment. This review provides an overview of our understanding of equine CDI while also identifying knowledge gaps and the need for a holistic One Health approach to a complicated issue.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Saúde Única , Animais , Clostridioides , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/veterinária , Diarreia , Cavalos
4.
Environ Microbiol ; 24(3): 1221-1230, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693624

RESUMO

Clostridium difficile isolates from the environment are closely related to those from humans, indicating a possible environmental transmission route for C. difficile infection (CDI). In this study, C. difficile was isolated from 47.3% (53/112) of lake/pond, 23.0% (14/61) of river, 20.0% (3/15) of estuary and 0.0% (0/89) of seawater samples. The most common toxigenic strain isolated was C. difficile PCR ribotype (RT) 014/020 (10.5%, 8/76). All water isolates were susceptible to fidaxomicin, metronidazole, rifaximin, amoxicillin/clavulanic acid, moxifloxacin and tetracycline. Resistance to vancomycin, clindamycin, erythromycin and meropenem was detected in 5.3% (4/76), 26.3% (20/76), 1.3% (1/76) and 6.6% (5/76) of isolates, respectively. High-resolution core-genome analysis was performed on RT 014/020 isolates of water origin and 26 clinical RT 014/020 isolates from the same year and geographical location. Notably, both human and water strains were intermixed across three sequence types (STs), 2, 13 and 49. Six closely related groups with ≤10 core-genome single nucleotide polymorphisms were identified, five of which comprised human and water strains. Overall, 19.2% (5/26) of human strains shared a recent genomic relationship with one or more water strains. This study supports the growing hypothesis that environmental contamination by C. difficile plays a role in CDI transmission.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/farmacologia , Clostridioides difficile/genética , Humanos , Testes de Sensibilidade Microbiana , Ribotipagem , Água , Sequenciamento Completo do Genoma
5.
J Appl Microbiol ; 133(3): 1156-1168, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34894035

RESUMO

AIMS: To investigate if Clostridium (Clostridioides) difficile infection (CDI), traditionally thought of as hospital-acquired, can be genomically linked to hospital or community environmental sources, and to define possible importation routes from the community to the hospital. METHODS AND RESULTS: In 2019, C. difficile was isolated from 89/300 (29.7%) floor and 96/300 (32.0%) shoe sole samples at a tertiary hospital in Western Australia. Non-toxigenic C. difficile ribotype (RT) 010 predominated among floor (96.6%) and shoe sole (73.2%) isolates, while toxigenic RT 014/020 was most prevalent among contemporaneous clinical cases (33.0%) at the hospital. Whole-genome sequencing and high-resolution core genome single nucleotide polymorphism (cgSNP) analysis on C. difficile strains from hospital and community sources showed no clinical C. difficile RT 014/020 strains were genetically related, and evidence of frequent long-distance, multi-directional spread between humans, animals and the environment. In addition, cgSNP analysis of environmental RT 010 strains suggested transportation of C. difficile via shoe soles. CONCLUSIONS: While C. difficile RT 014/020 appears to spread via routes outside the healthcare system, RT 010 displayed a pattern of possible importation from the community into the hospital. SIGNIFICANCE AND IMPACT OF STUDY: These findings suggest developing community-based infection prevention and control strategies could significantly lower rates of CDI in the hospital setting.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Clostridioides , Clostridioides difficile/genética , Clostridium , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/epidemiologia , Hospitais , Humanos , Ribotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA