RESUMO
The electrochemistry and electronic structures of over 30 tungsten-alkylidyne compounds of the form W(CR)L(n)L'(4-n)X (R = H, Bu(t), Ph, p-C6H4CCH, p-C6H4CCSiPr(i)3; X = F, Cl, Br, I, OTf, Bu(n), CN, OSiMe3, OPh; L/L' = PMe3, 1/2 dmpe, 1/2 depe, 1/2 dppe, 1/2 tmeda, P(OMe)3, CO, CNBu(t), py), in which the alkylidyne R group and L and X ligands are systematically varied, have been investigated using cyclic voltammetry and density functional theory calculations in order to determine the extent to which the oxidation potential may be tuned and its dependence on the nature of the metal-ligand interactions. The first oxidation potentials are found to span a range of â¼2 V. Symmetry considerations and the electronic-structure calculations indicate that the highest occupied molecular orbital (and redox orbital) is of principal d(xy) orbital parentage for most of the compounds in this series. The dependence of the oxidation potential on ligand is a strong function of the symmetry relationship between the substituent and the d(xy) orbital, being much more sensitive to the nature of the equatorial L ligands (π symmetry, with respect to d(xy), ΔE1/2 â 0.5 V/L) than to the axial CR and X ligands (nonbonding with respect to d(xy), ΔE(1/2) < 0.3 V/L). The oxidation potential is linearly correlated with the calculated d(xy) orbital energy (slope â 1, R(2) = 0.97), which thus provides a convenient computational descriptor for the potential. The strength of the correlation and slope of unity are proposed to be manifestations of the small inner-sphere reorganization energy associated with one-electron oxidation.
Assuntos
Alcinos/química , Compostos Organometálicos/química , Tungstênio/química , Conformação Molecular , Compostos Organometálicos/síntese química , Oxirredução , Teoria QuânticaRESUMO
Optical inteference (OI) coated slides with unique optical properties were utilized in microarray analyses, demonstrating their enhanced detection sensitivity over traditional microarray substrates. The OI coating is comprised of a proprietary multilayered, dielectric, thin-film interference coating located beneath the functional coating (aminosilane or epoxysilane). It is designed to enhance the fluorescence in the Cy3 and Cy5 channel by increasing the light absorption of the dyes by about 6-fold and by redirecting emitted fluorescence into the detector during scanning, resulting in a theoretical limit of about 12-fold signal amplification. Two-color DNA microarray experiments conducted on the OI slides showed over 8-fold signal amplification, conservation of gene expression ratios, and increased signal-to-noise ratio when compared to control slides, indicating enhanced detection sensitivity. Protein microarray assays also exhibited over 8-fold signal amplification at three different target concentrations, demonstrating the versatility of the OI slides for different microarray applications. Further, the DNA and protein assays performed on the OI slides exhibited excellent detection sensitivity even at the low target amounts essential for diagnostic applications. The OI slides are compatible with commonly used protocols, printers, scanners and other microarray equipment. Therefore, the OI slides offer an attractive alternative to traditional microarray substrates, where enhanced detection sensitivity is desired.