Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2517, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291072

RESUMO

Feline infectious peritonitis (FIP) is a severe feline coronavirus-associated syndrome in cats, which is invariably fatal without anti-viral treatment. In the majority of non-effusive FIP cases encountered in practice, confirmatory diagnostic testing is not undertaken and reliance is given to the interpretation of valuable, but essentially non-specific, clinical signs and laboratory markers. We hypothesised that it may be feasible to develop a machine learning (ML) approach which may be applied to the analysis of clinical data to aid in the diagnosis of disease. A dataset encompassing 1939 suspected FIP cases was scored for clinical suspicion of FIP on the basis of history, signalment, clinical signs and laboratory results, using published guidelines, comprising 683 FIP (35.2%), and 1256 non-FIP (64.8%) cases. This dataset was used to train, validate and evaluate two diagnostic machine learning ensemble models. These models, which analysed signalment and laboratory data alone, allowed the accurate discrimination of FIP and non-FIP cases in line with expert opinion. To evaluate whether these models may have value as a diagnostic tool, they were applied to a collection of 80 cases for which the FIP status had been confirmed (FIP: n = 58 (72.5%), non-FIP: n = 22 (27.5%)). Both ensemble models detected FIP with an accuracy of 97.5%, an area under the curve (AUC) of 0.969, sensitivity of 95.45% and specificity of 98.28%. This work demonstrates that, in principle, ML can be usefully applied to the diagnosis of non-effusive FIP. Further work is required before ML may be deployed in the laboratory as a diagnostic tool, such as training models on datasets of confirmed cases and accounting for inter-laboratory variation. Nevertheless, these results illustrate the potential benefit of applying ML to standardising and accelerating the interpretation of clinical pathology data, thereby improving the diagnostic utility of existing laboratory tests.


Assuntos
Coronavirus Felino , Peritonite Infecciosa Felina , Gatos , Animais , Peritonite Infecciosa Felina/diagnóstico , Estudos de Viabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA