Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 16(6): e0253265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138927

RESUMO

A therapeutic vaccine that induces lasting control of HIV infection could eliminate the need for lifelong adherence to antiretroviral therapy. This study investigated a therapeutic DNA vaccine delivered with a single adjuvant or a novel combination of adjuvants to augment T cell immunity in the blood and gut-associated lymphoid tissue in SIV-infected rhesus macaques. Animals that received DNA vaccines expressing SIV proteins, combined with plasmids expressing adjuvants designed to increase peripheral and mucosal T cell responses, including the catalytic subunit of the E. coli heat-labile enterotoxin, IL-12, IL-33, retinaldehyde dehydrogenase 2, soluble PD-1 and soluble CD80, were compared to mock-vaccinated controls. Following treatment interruption, macaques exhibited variable levels of viral rebound, with four animals from the vaccinated groups and one animal from the control group controlling virus at median levels of 103 RNA copies/ml or lower (controllers) and nine animals, among all groups, exhibiting immediate viral rebound and median viral loads greater than 103 RNA copies/ml (non-controllers). Although there was no significant difference between the vaccinated and control groups in protection from viral rebound, the variable virological outcomes during treatment interruption enabled an examination of immune correlates of viral replication in controllers versus non-controllers regardless of vaccination status. Lower viral burden in controllers correlated with increased polyfunctional SIV-specific CD8+ T cells in mesenteric lymph nodes and blood prior to and during treatment interruption. Notably, higher frequencies of colonic CD4+ T cells and lower Th17/Treg ratios prior to infection in controllers correlated with improved responses to ART and control of viral rebound. These results indicate that mucosal immune responses, present prior to infection, can influence efficacy of antiretroviral therapy and the outcome of immunotherapeutic vaccination, suggesting that therapies capable of modulating host mucosal responses may be needed to achieve HIV cure.


Assuntos
Antirretrovirais/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Vacinas de DNA/uso terapêutico , Animais , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
2.
AIDS Res Hum Retroviruses ; 35(3): 295-305, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30398361

RESUMO

Depletion of gut T helper 17 (Th17) cells during HIV infection leads to decreased mucosal integrity and increased disease progression. Conversely, T regulatory (Treg) cells may inhibit antiviral responses or immune activation. In HIV elite controllers, a balanced Th17/Treg ratio is maintained in the blood, suggesting a role for these responses in controlling inflammation and viral replication. HIV-infected individuals exhibit a range in responsiveness to combination antiretroviral therapy (cART). Given the link between the Th17/Treg ratio and HIV disease, we reasoned these responses may play a role in cART responsiveness. In this study, we investigated the relationship between the mucosal Th17/Treg ratio to acute simian immunodeficiency virus (SIV) viremia and the response to cART. Nineteen rhesus macaques were infected with highly pathogenic SIVΔB670 virus and cART was initiated 6 weeks postinfection. Mucosal CD4 T cell subsets were assessed by intracellular cytokine staining in the colon and mesenteric lymph nodes. Higher baseline Th17/Treg ratios corresponded with increased acute SIV viremia. Th17/Treg ratios decreased during acute SIV infection and were not restored during cART, and this corresponded to increased gut immune activation (Ki67+), markers of microbial translocation (sCD14), and T cell exhaustion (TIGIT+). Animals that maintained a more balanced mucosal Th17/Treg ratio at the time of cART initiation exhibited a better virological response to cART and maintained higher peripheral CD4 counts. These results suggest mucosal Th17 and Treg homeostasis influences acute viremia and the response to cART, a result that suggests therapeutic interventions that improve the Th17/Treg ratio before or during cART may improve treatment of HIV.


Assuntos
Antirretrovirais/uso terapêutico , Homeostase/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Viremia/virologia , Animais , Antirretrovirais/administração & dosagem , Colo/patologia , Modelos Animais de Doenças , Infecções por HIV/imunologia , Mucosa Intestinal/imunologia , Linfonodos/imunologia , Macaca mulatta , Masculino , Mesentério , Doenças dos Macacos/tratamento farmacológico , Linfócitos T Reguladores/metabolismo , Resultado do Tratamento , Carga Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA