Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 889: 164269, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37211127

RESUMO

Acid mine drainage (AMD) is known as an important source of environmental pollution with potentially toxic elements. High concentrations of minerals in soil were observed in a pomegranate garden nearby a copper mine, Chaharmahal and Bakhtiari, Iran. In the vicinity of this mine, AMD locally caused distinct chlorosis in pomegranate trees. As expected, potentially toxic concentrations of Cu, Fe, and Zn were accumulated in the leaves of the chlorotic pomegranate trees (YLP), i.e., increased by 69 %, 67 % and 56 %, respectively, compared to the non-chlorotic trees (GLP). Remarkably, also some other elements, including Al (82 %), Na (39 %), Si (87 %), and Sr (69 %) were considerably enhanced in YLP, compared to GLP. On the other hand, the foliar Mn concentration in YLP was strongly decreased, about 62 % lower than that in GLP. The most plausible reasons for chlorosis in YLP are either toxicity of Al, Cu, Fe, Na, and Zn, or a deficiency of Mn. In addition, AMD led to oxidative stress, shown by a high accumulation of H2O2 in YLP, and a strong upregulation of enzymatic and non-enzymatic antioxidants. AMD apparently caused chlorosis, reduced the size of individual leaves, and caused lipid peroxidation. A further analysis of the adverse effect of the responsible AMD component(s) could be helpful to reduce the risk of food chain contamination.


Assuntos
Anemia Hipocrômica , Metais Pesados , Punica granatum , Cobre/toxicidade , Árvores , Peróxido de Hidrogênio , Metais Pesados/análise
2.
Front Plant Sci ; 13: 1030938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388511

RESUMO

Spreading the cultivation of crops with high nutritional values such as quinoa demands a wide area of research to overcome the adverse effects of environmental stress. This study aimed at investigating the role of salicylic acid (SA) and sodium nitroprusside (SNP) as a nitric oxide donor, priming at improving the antioxidant defense systems in boosting salinity tolerance in Chenopodium quinoa. These two treatments, SA (0.1 mM) and SNP (0.2 mM), individually or in combination, significantly improved the function of both enzymatic and non-enzymatic antioxidants. SA and SNP priming significantly reduced superoxide dismutase activity, which was accompanied by a significant decrease in hydrogen peroxide accumulation under salinity stress (100 mM NaCl). The SA and SNP treatment increased the activity of enzymatic antioxidants (e.g., catalase, ascorbate peroxidase, peroxidase, and glutathione reductase) and the accumulation of non-enzymatic antioxidants (e.g. ascorbate-glutathione pools, α-tocopherol, phenols, flavonoids, anthocyanins, and carotenoids) to suppress the oxidative stress induced by salinity stress. Under SA and SNP treatment, the upregulation of antioxidant mechanisms induced a significant increase in chlorophyll florescence, chlorophylls, carotenoids, and proteins, as well as a significant reduction in the malondialdehyde content in salinity-stressed plants. In addition, the foliar application of SA or/and SNP led to a significant increase in the accumulation of osmoprotectant molecules of sugars and proline to overcome osmotic stress induced by salinity stress. In conclusion, SA and SNP priming can effectively combat salinity stress through improving the redox status of plants.

3.
BMC Plant Biol ; 22(1): 148, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35346042

RESUMO

BACKGROUND: Nano-materials ameliorate the adverse effect of salinity stress on the physiological and biochemical processes in plants. The present investigation was designed to evaluate the physiological mechanisms through which a nano-chitosan-encapsulated nano-silicon fertilizer (NC-NS) can ameliorate the adverse effect of salinity stress on the wheat plants, and compare it with nano-chitosan (NC) and nano-silicon (NS) application. Nano-silicon was encapsulated with a chitosan-tripolyphosphate (TPP) nano-matrix by ionic gelation method for its slow release. The wheat plants were exposed to foliar application of distilled water, NC, NS, and NC-NS with two NaCl irrigation levels at 0 (distilled water) and 100 mM. RESULTS: The foliar application of NC, NS, and NC-NS induced a significant increase in the function of enzymatic and non-enzymatic antioxidant systems of the wheat plants to equilibrate cellular redox homeostasis by balancing H2O2 content in the leaves and roots, as compared with salt-stressed plants without treatment. The plant's foliar-sprayed with NC, NS, and NC-NS solution exhibited a significant increase in the molecules with osmotic adjustment potentials such as proline, free amino acids, glycine betaine, and sugars to protect cells against osmotic stress-induced by salinity. The observed increase in the antioxidant power and osmoregulatory at NC, NS, and NC-NS application was accompanied by the protection of lipid membrane, proteins and photosynthetic apparatus against salinity stress. CONCLUSION: In the present study, the beneficial role of NC, NS, and NC-NS application, particularly NC-NS, in alleviating the adverse effect of salinity stress on antioxidant systems and osmotic adjustment in wheat is well documented. An overview of the result of present study assists researchers in providing a potential solution for this increasing salinization threat in crops.


Assuntos
Salinidade , Triticum , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Silício/farmacologia , Triticum/metabolismo
4.
Plant Physiol Biochem ; 169: 40-48, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34749270

RESUMO

Silicon (Si) is known to alleviate the adverse impact of different abiotic and biotic stresses by different mechanisms including morphological, physiological, and genetic changes. Photosynthesis, one of the most important physiological processes in the plant is sensitive to different stress factors. Several studies have shown that Si ameliorates the stress effects on photosynthesis by protecting photosynthetic machinery and its function. In stressed plants, several photosynthesis-related processes including PSII maximum photochemical quantum yield (Fv/Fm), the yield of photosystem II (φPSII), electron transport rates (ETR), and photochemical quenching (qP) were observed to be regulated when supplemented with Si, which indicates that Si effectively protects the photosynthetic machinery. In addition, studies also suggested that Si is capable enough to maintain the uneven swelling, disintegrated, and missing thylakoid membranes caused during stress. Furthermore, several photosynthesis-related genes were also regulated by Si supplementation. Taking into account the key impact of Si on the evolutionarily conserved process of photosynthesis in plants, this review article is focused on the aspects of silicon and photosynthesis interrelationships during stress and signaling pathways. The assemblages of this discussion shall fulfill the lack of constructive literature related to the influence of Si on one of the most dynamic and important processes of plant life i.e. photosynthesis.


Assuntos
Folhas de Planta , Silício , Clorofila , Transporte de Elétrons , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Silício/farmacologia
5.
Plant Physiol Biochem ; 169: 160-170, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34800820

RESUMO

Sodium nitroprusside (SNP), which produces nitric oxide (NO) has the well-documented potential to alleviate the adverse effects of various abiotic stressors such as salinity. The present study aimed at investigating how the application of SNP can ameliorate the adverse effects of salt stress and boost tolerance in Raphanus sativus. Salt stress induced by application of 100 or 200 mM NaCl significantly decreased photosynthetic pigments and chlorophyll fluorescence, followed by a significant reduction in carbohydrate content. SNP treatment increased salt-tolerance in plants by inhibiting the adverse effect of salinity on the photosynthetic apparatus and the accumulation of sugars. Salt stress was accompanied by a reduction in total antioxidant power (FRAP), accumulation of damaging levels of H2O2, lipid peroxidation, and reduction in protein, while SNP enhanced FRAP, reduced H2O2 and lipid peroxidation, and restored protein abundance. SNP treatment also increased hypocotyl growth of salt-stressed plants, accompanied by improvement in anatomical structure. Cross sections of the hypocotyl showed increased diameter of the central cylinder and thickness of the casparian strip in the SNP-treated plants under stress conditions. Indeed, the observed improvement in the growth of hypocotyl and leaves of salt-stressed radish plants treated with SNP, in parallel with improved physiology and anatomical features, suggested that NO can regulate diverse mechanisms to effectively increase salt tolerance.


Assuntos
Raphanus , Antioxidantes , Peróxido de Hidrogênio , Nitroprussiato/farmacologia , Folhas de Planta , Estresse Salino , Estresse Fisiológico
6.
J Biotechnol ; 329: 180-191, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33610656

RESUMO

Salinization is a worldwide environmental problem, which is negatively impacting crop yield and thus posing a threat to the world's food security. Considering the rising threat of salinity, it is need of time, to understand the salt tolerant mechanism in plants and find avenues for the development of salinity resistant plants. Several plants tolerate salinity in a different manner, thereby halophytes and glycophytes evolved altered mechanisms to counter the stress. Therefore, in this review article, physiological, metabolic, and molecular aspects of the plant adaptation to salt stress have been discussed. The conventional breeding techniques for developing salt tolerant plants has not been much successful, due to its multigenic trait. The inflow of data from plant sequencing projects and annotation of genes led to the identification of many putative genes having a role in salt stress. The bioinformatics tools provided preliminary information and were helpful for making salt stress-specific databases. The microRNA identification and characterization led to unraveling the finer intricacies of the network. The transgenic approach finally paved a way for overexpressing some important genes viz. DREB, MYB, COMT, SOS, PKE, NHX, etc. conferred salt stress tolerance. In this review, we tried to show the effect of salinity on plants, considering ion homeostasis, antioxidant defense response, proteins involved, possible utilization of transgenic plants, and bioinformatics for coping with this stress factor. An overview of previous studies related to salt stress is presented in order to assist researchers in providing a potential solution for this increasing environmental threat.


Assuntos
Estresse Salino , Plantas Tolerantes a Sal , Plantas Geneticamente Modificadas , Salinidade , Tolerância ao Sal , Plantas Tolerantes a Sal/genética , Estresse Fisiológico
7.
Molecules ; 26(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573318

RESUMO

During the time of the novel coronavirus disease 2019 (COVID-19) pandemic, it has been crucial to search for novel antiviral drugs from plants and well as other natural sources as alternatives for prophylaxis. This work reviews the antiviral potential of plant extracts, and the results of previous research for the treatment and prophylaxis of coronavirus disease and previous kinds of representative coronaviruses group. Detailed descriptions of medicinal herbs and crops based on their origin native area, plant parts used, and their antiviral potentials have been conducted. The possible role of plant-derived natural antiviral compounds for the development of plant-based drugs against coronavirus has been described. To identify useful scientific trends, VOSviewer visualization of presented scientific data analysis was used.


Assuntos
Antivirais/uso terapêutico , COVID-19/prevenção & controle , Extratos Vegetais/uso terapêutico , Alcaloides/química , Alcaloides/farmacologia , Antivirais/química , Visualização de Dados , Flavonoides/química , Flavonoides/farmacologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Terpenos/química , Terpenos/farmacologia , Tratamento Farmacológico da COVID-19
8.
Plants (Basel) ; 9(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316881

RESUMO

The goal of this study was to determine whether the application of gibberellic acid (GA3) to seeds of common wheat varieties with different vernalization and photoperiod requirements affects the transition from vegetative to generative stage. Three varieties of wheat with different photoperiod sensitivities and vernalization were selected for the experiment-the winter varieties, Mironovskaya and Bezostaya, and the spring variety, Sirael. Seeds were treated with different concentrations of GA3 and plants were grown under long-day conditions with monitoring of their photosynthetic activity (Fv/Fm, Pn, E, gs). We monitored the activity of the photosynthetic apparatus by checking the plants to see if they were growing properly. The phenological stages of the wheat species were checked for indications of a transition from the vegetative to the generative stage. Selected concentrations of GA3 had no effect on the compensation of the vernalization process (transition to the generative phase). Chlorophyll fluorescence was one of the factors for monitoring stress. The variety, Bezostaya, is similar to the spring variety, Sirael, in its trends and values. The growth conditions of Bezostaya and Sirael were not affected by the activity of the photosynthetic apparatus. The development of growing points in winter varieties occurred at the prolonged single ridge stage. The spring variety reached the stage of head emergence after sixty days of growth (changes to the flowering phase did not appear in winter wheat). Application of GA3 to the seeds had no effect on the transition of the growing point to the double-ridge generative stage. The present study highlights the priming effect of GA3 on seeds of common wheat varieties with different vernalization and photoperiod requirements as it affected the transition from vegetative to generative stage.

9.
Plant Physiol Biochem ; 154: 657-664, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32738703

RESUMO

Seed germination is critical for successful crop production and this growth stage can be very sensitive to salt stress depending on the plant's tolerance mechanisms. The pretreatment of Chenopodium quinoa (quinoa) seeds with CaCl2, H2O2 and sodium nitroprusside (SNP) limited the adverse effect of salt stress on seed germination. The pre-treated seeds showed a significant increase in germination rate, relative germination rate and germination index while the mean germination time was significantly reduced under both optimal and stress conditions. In parallel with seed germination, the negative effect of salt stress on the activity of α-amylase and ß-amylase was reduced in pre-treated seeds. The amylase enzymes are responsible for starch hydrolysis, so the reduction of amylase activity by salt stress resulted in higher starch content in the seeds and lower concentrations of water-soluble sugars such as glucose. Pretreatment stimulated amylase activity resulting in starch breakdown and increased content of water-soluble sugars in the salt-stressed seeds. Protein and amino acid contents were significantly enhanced in salt-stressed seeds, which were highlighted in pre-treated seeds. The findings of this study demonstrate that pretreatment of quinoa seeds with CaCl2, H2O2 and SNP at 5, 5 and 0.2 mM, respectively, concentration to achieve rapid germination at high levels under optimal and salt-stress conditions.


Assuntos
Cálcio/metabolismo , Chenopodium quinoa/fisiologia , Germinação , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Estresse Salino , Cloreto de Cálcio/farmacologia , Chenopodium quinoa/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Nitroprussiato/farmacologia , Sais , Sementes/efeitos dos fármacos , Sementes/fisiologia
10.
Sci Rep ; 10(1): 10427, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591518

RESUMO

Plant survival in response to freezing stress depends on the efficient activation of tolerance mechanisms. Fritillaria imperialis exposure to freezing stress enhanced signalling molecules Ca2+ and H2O2 along with overexpression of Ca2+ signalling proteins (Ca2+ dependent protein kinases, CPK), followed by upregulation of NHX1 (Na+/H+ antiporter), LEA (late embryogenesis abundant proteins) and P5CS (1-pyrroline-5-carboxylate synthetase). Overexpression of OsCNGC6 was responsible for high accumulation Ca2+, Na+ and K+. The NHX1 gene product transported Na+ to vacuoles and increased cytosolic K+ content to re-establish ionic homeostasis under stress conditions. The reduced water potential of leaves was due to high accumulation of osmolytes and ions. No changes were observed in relative water content of leaves, which might be correlated with overexpression of the LEA gene, which protects against dehydration. High accumulation of H2O2 under freezing stress was responsible for activation of antioxidant systems involving SOD, phenols, anthocyanins, catalase and ascorbate peroxidase. Photosynthesis, suppressed in freezing-stressed plants, returned to normal levels after termination of freezing stress. Taken together, our findings suggest that Fritillaria efficiently tolerated freezing stress through induction of signalling mechanisms and overexpression of cold stress-responsive genes, and prevention of cold-induced water stress, oxidative stress and photosynthetic damage.


Assuntos
Antioxidantes/metabolismo , Temperatura Baixa , Fritillaria/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Fritillaria/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/fisiologia , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Plants (Basel) ; 9(4)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325817

RESUMO

Salt stress is one of the most serious environmental stressors that affect productivity of salt-sensitive crops. Medicago ciliaris is an annual legume whose adaptation to agroclimatic conditions has not been well described. This study focused on the salinity tolerance of M. ciliaris genotypes compared to M. intertexta and M. scutellata in terms of plant growth, physiology, and biochemistry. Salt tolerance was determined at both germination and early seedling growth. Germination and hydroponic assays were used with exposing seeds to 0, 50, 100, 150, and 200 mM NaCl. Among seven genotypes of M. ciliaris studied, Pop1, 355, and 667, were most salt tolerant. Populations like 355 and 667 showed marked tolerance to salinity at both germination and seedling stages (TI ≤1, SI(FGP) > 0 increased FGP ≥ 20% and SI(DW) < 0 (DW decline ≤ 20%); at 100 mM); while Pop1 was the most salt tolerant one at seedling stages with (TI =1.79, SI(FGP) < 0 decline of FGP ≤ 40% and with increased DW to 79%); at 150 mM NaCl). The genotypes, 306, 773, and M. scutellata, were moderately tolerant to salt stress depending on salt concentration. Our study may be used as an efficient strategy to reveal genetic variation in response to salt stress. This approach allows selection for desirable traits, enabling more efficient applications in breeding methods to achieve stress-tolerant M. ciliaris populations.

12.
Physiol Mol Biol Plants ; 25(6): 1469-1482, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31736549

RESUMO

Rising water scarcity, together with increased industrial wastewater production, suggests reusing of wastewater for plant irrigation. The wastewater from Razi petrochemical complex contained different salts and heavy metals. Variation in Brassica napus responses to wastewater irrigation has recommended appropriate levels of mineral nutrients in diluted wastewater that stimulated plant growth, and toxic levels of salts in undiluted wastewater that restricted plant growth. The undiluted wastewater irrigation significantly decreased chlorophyll fluorescence, along with photosynthetic capacity, while wastewater dilution mitigated its adverse effect. High levels of salts in undiluted wastewater induced an imbalance in plant mineral nutrients, which was evidenced with increased lipid peroxidation and reduced plant growth. On the contrary to adverse effects of undiluted wastewater on plant performance, the diluted wastewater, especially at 50% level, behaved as a fertilizer which increased leaf mineral nutrients, photosynthetic capacity, morphological and anatomical features of plant, but decreased lipid peroxidation. In relation to improvement in photosynthetic capacity, a significant increase was achieved in stomatal traits in plants irrigated with half-strength wastewater. In conclusion, due to the nutrition values of wastewater, it can be suggested to irrigate plants with diluted wastewater with the aim of improving crop productivity and saving freshwater sources.

13.
Front Plant Sci ; 9: 1430, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323827

RESUMO

Stevia rebaudiana Bertoni is a sweet medicinal herb that is cultivated worldwide. This study aimed to identify the genotypic responses and function of nine cultivars of S. rebaudiana (accession numbers 1-9 from the EUSTAS Stevia Gene Bank) to low temperature. Plants were grown in vitro and incubated under controlled conditions at 5° or 25°C for 1 month. Cold stress significantly decreased the maximum quantum yield of photosystem II (Fv/Fm) in all cultivars, which was more pronounced in cultivars 5, 6, 8, and 9. The efficiency of photosystems I and II (PIABS) also declined in cold-stressed plants and was accompanied by reductions in net photosynthesis (PN), intercellular CO2 (Ci), water use efficiency (WUE), and chlorophyll a, chlorophyll b and carotenoid contents, more so in cultivars 5, 6, 8, and 9. Regardless of the downregulation of photosynthetic capacity, the cold stress increased water-soluble carbohydrates in all cultivars, which was accompanied by an increase in fresh leaf mass and area, more so in cultivars 5, 6, 8, and 9. Furthermore, cold stress increased the stomatal index and density, epidermal cell density, stem diameter, xylem vessel width, phloem tissue width, and number of sclerenchyma in all cultivars. Even though the nine cultivars of S. rebaudiana had lower PSII efficiencies at low temperatures, the increase in carbohydrates and leaf mass suggests that damage to PSII is not responsible for the reduction in its efficiency.

14.
Physiol Mol Biol Plants ; 24(2): 335-341, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29515327

RESUMO

The study on Stevia callus has the potential to advance the knowledge of antioxidant mechanisms involved in unorganized cells response to drought stress. The effects of polyethylene glycol (PEG; 0 and 4% w/v) in combination with paclobutrazol (PBZ; 0 and 2 mg l-1) and gibberellin (GA; 0 and 2 mg l-1) were studied on Stevia rebaudiana callus. PEG treatment led to an oxidative stress, as indicated by increased H2O2 content whose accumulation was prevented with PBZ and GA treatments. All treatments of PEG, PBZ and GA increased the total antioxidant capacity, with the highest antioxidant power in PBZ and GA treatments without PEG. The activity of superoxide dismutase, catalase and ascorbate peroxidase significantly increased in PEG treatment alone or in combination with PBZ and GA. All treatments of PEG, PBZ and GA significantly increased proteins, amino acids and proline contents, with the highest increase in presence of PBZ in medium culture. In contrary to proline, the activity of pyrroline-5-carboxylate synthetase and proline dehydrogenase did not change in response to any of the treatments. Collectively, our results demonstrated that PBZ and GA increased reactive oxygen species scavenging and osmolytes in PEG-treated calli more than PEG treatment alone to alleviate negative effects of PEG on Stevia calli. These findings will enable us to design effective genetic engineering strategies in callus culture to generate some somaclonal variation that may be useful in enhancing drought resistance in Stevia.

15.
FEBS Open Bio ; 6(9): 937-44, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27642557

RESUMO

Stevia rebaudiana is a sweet herb of the Astraceae family, which is cultivated for the natural sweeteners it contains. The aim of this study was to assess the effect of drought, simulated by the application of polyethylene glycol (5%, 10%, and 15% w/v), on the content of steviol glycosides (SVglys) and transcription levels of six genes involved in the biosynthesis of these natural sweeteners. The transcription levels of ent-kaurene synthase, ent-kaurene oxidase, ent-kaurenoic acid hydroxylase, and three UDP-dependent glycosyltransferases, UGT85C2,UGT74G1 and UGT76G1 were downregulated under polyethylene glycol treatment. Polyethylene glycol treatment significantly decreased the amount of stevioside, rebaudioside A, B, C and F, steviolbioside, dulcoside A, rubusoside, and total SVglys. These results strongly suggest a close relationship of SVglys content with the transcription of genes involved in the SVglys biosynthesis pathway. Comparing the observations of the present study with other reports provided the knowledge that the Stevia response to drought stress can be influenced by different environmental and experimental factors, in addition to intensity of drought stress. In conclusion, these results strongly suggest that polyethylene glycol-induced drought stress has a negative effect on the content of SVglys and transcription of SVglys biosynthetic genes and that this should be investigated further. We recommend that sufficient irrigation of Stevia is required to obtain a high content of SVglys.

16.
Appl Biochem Biotechnol ; 172(8): 4038-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24604127

RESUMO

This investigation was carried out with the aim of determining the effect of paclobutrazol (PBZ) (0 and 2 mg l(-1)) and polyethylene glycol (PEG) (0, 2, 4 and 6 % w/v of PEG 6000) treatments on antioxidant system of Stevia rebaudiana Bertoni under in vitro condition. Analysis of data showed that PEG treatment significantly increased hydrogen peroxide (H2O2) and phenolic contents, while PBZ treatment limited the effect of PEG on them. Our data revealed that PEG treatment significantly increased total antioxidant capacity, catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and peroxidase (POD) activity, while it inversely decreased glutathione reductase (GR) activity. The superoxide dismutase (SOD) activity was not affected by PEG treatment. PBZ treatment induced significantly higher levels of CAT and GR activity and lower levels of SOD activity in PEG-treated plants. PBZ in combination with PEG resulted in no significant difference on APX activity with PEG treatment alone. PBZ treatment prevented the effect of PEG on the PPO activity. PEG (with or without PBZ) treatment increased the ascorbate pool, whereas total glutathione level was not affected by PEG. Our finding indicated that PBZ reduced the negative effect of PEG treatment by quenching H2O2 accumulation and increasing the CAT activity. Collectively, the antioxidant capacity of S. rebaudiana in PEG treatment condition was associated with active enzymatic and non-enzymatic defence systems which partly could be improved by the PBZ treatment. In addition, a higher accumulation of phenolic compounds leads to a more potent reactive oxygen species scavenging activity in S. rebaudiana.


Assuntos
Antioxidantes/metabolismo , Polietilenoglicóis/farmacologia , Stevia/efeitos dos fármacos , Stevia/metabolismo , Triazóis/farmacologia , Ácido Ascórbico/metabolismo , Técnicas de Cultura , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Fenóis/metabolismo , Stevia/enzimologia
17.
Pak J Biol Sci ; 10(1): 41-8, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19069984

RESUMO

The effect ofpaclobutrazol (PBZ) treatment on salinity tolerance of wheat (Triticum aestivum), were investigated for two salt-tolerant and salt-sensitive cultivars. Salinity with PBZ treatment significantly reduced the plant height and length and area of sixth leaf in both cultivars. With increasing salinity, a gradually reduction was observed in roots length, fresh and dry weight of shoot and sixth leaf and relative water content of PBZ-applied plants in both cultivars. The greatest reduction was observed at 225 mM NaCl with 60 or 90 ppm PBZ. Salinity with PBZ treatment increased Na+ content in the sixth leaf and roots of both cultivars and the greatest increase was observed in salt-sensitive cultivar. In PBZ-treated plants, K+, P and N contents increased in line with elevating salinity in both cultivars, except at 90 ppm PBZ in salt-sensitive cultivar. Very similar effects of NaCl and PBZ treatment were observed for both cultivars regardless of their salinity susceptibility. The results suggest that PBZ treatment may be useful to improve the salt tolerance of wheat via reducing the negative effect of salinity on vegetative growth and the Na+ content and increasing the K+, P and N contents.


Assuntos
Sais/farmacologia , Triazóis/farmacologia , Triticum , Biomassa , Distribuição Aleatória , Salinidade , Tolerância ao Sal , Sais/química , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA