Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(26): eabl9207, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35776795

RESUMO

Nutrient inputs from the atmosphere and rivers to the ocean are increased substantially by human activities. However, the effects of increased nutrient inputs are not included in the widely used CMIP5 Earth system models, which introduce bias into model simulations of ocean biogeochemistry. Here, using historical simulations by an Earth system model with perturbed atmospheric and riverine nutrient inputs, we show that the contribution of anthropogenic nutrient inputs to past global changes in ocean biogeochemistry is of similar magnitude to the effect of climate change. Anthropogenic nutrient inputs increase oceanic productivity and carbon uptake, offsetting climate-induced decrease and accelerating climate-driven deoxygenation in the upper ocean. Moreover, accounting for anthropogenic nutrient inputs improves the known carbon budget imbalance and model underestimation of the observed decrease in the global oxygen inventory. Considering the effects of both nutrient inputs and climate change is crucial in assessing anthropogenic impacts on ocean biogeochemistry.

2.
Nat Commun ; 13(1): 989, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190562

RESUMO

Both low soil water content (SWC) and high atmospheric dryness (vapor pressure deficit, VPD) can negatively affect terrestrial gross primary production (GPP). The sensitivity of GPP to soil versus atmospheric dryness is difficult to disentangle, however, because of their covariation. Using global eddy-covariance observations, here we show that a decrease in SWC is not universally associated with GPP reduction. GPP increases in response to decreasing SWC when SWC is high and decreases only when SWC is below a threshold. By contrast, the sensitivity of GPP to an increase of VPD is always negative across the full SWC range. We further find canopy conductance decreases with increasing VPD (irrespective of SWC), and with decreasing SWC on drier soils. Maximum photosynthetic assimilation rate has negative sensitivity to VPD, and a positive sensitivity to decreasing SWC when SWC is high. Earth System Models underestimate the negative effect of VPD and the positive effect of SWC on GPP such that they should underestimate the GPP reduction due to increasing VPD in future climates.


Assuntos
Ar , Secas , Fotossíntese , Solo/química , Conjuntos de Dados como Assunto , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Europa (Continente) , Redes Neurais de Computação , Folhas de Planta/fisiologia , Pressão de Vapor , Água/análise , Água/química
3.
Prog Earth Planet Sci ; 7(1): 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33214995

RESUMO

To date, the treatment of permafrost in global climate models has been simplified due to the prevailing uncertainties in the processes involving frozen ground. In this study, we improved the modeling of permafrost processes in a state-of-the-art climate model by taking into account some of the relevant physical properties of soil such as changes in the thermophysical properties due to soil freezing. As a result, the improved version of the global land surface model was able to reproduce a more realistic permafrost distribution at the southern limit of the permafrost area by increasing the freezing of soil moisture in winter. The improved modeling of permafrost processes also had a significant effect on future projections. Using the conventional formulation, the predicted cumulative reduction of the permafrost area by year 2100 was approximately 60% (40-80% range of uncertainty from a multi-model ensemble) in the RCP8.5 scenario, while with the improved formulation, the reduction was approximately 35% (20-50%). Our results indicate that the improved treatment of permafrost processes in global climate models is important to ensuring more reliable future projections.

4.
Prog Earth Planet Sci ; 7(1): 56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088673

RESUMO

The Yedoma layer, a permafrost layer containing a massive amount of underground ice in the Arctic regions, is reported to be rapidly thawing. In this study, we develop the Permafrost Degradation and Greenhouse gasses Emission Model (PDGEM), which describes the thawing of the Arctic permafrost including the Yedoma layer due to climate change and the greenhouse gas (GHG) emissions. The PDGEM includes the processes by which high-concentration GHGs (CO2 and CH4) contained in the pores of the Yedoma layer are released directly by dynamic degradation, as well as the processes by which GHGs are released by the decomposition of organic matter in the Yedoma layer and other permafrost. Our model simulations show that the total GHG emissions from permafrost degradation in the RCP8.5 scenario was estimated to be 31-63 PgC for CO2 and 1261-2821 TgCH4 for CH4 (68th percentile of the perturbed model simulations, corresponding to a global average surface air temperature change of 0.05-0.11 °C), and 14-28 PgC for CO2 and 618-1341 TgCH4 for CH4 (0.03-0.07 °C) in the RCP2.6 scenario. GHG emissions resulting from the dynamic degradation of the Yedoma layer were estimated to be less than 1% of the total emissions from the permafrost in both scenarios, possibly because of the small area ratio of the Yedoma layer. An advantage of PDGEM is that geographical distributions of GHG emissions can be estimated by combining a state-of-the-art land surface model featuring detailed physical processes with a GHG release model using a simple scheme, enabling us to consider a broad range of uncertainty regarding model parameters. In regions with large GHG emissions due to permafrost thawing, it may be possible to help reduce GHG emissions by taking measures such as restraining land development.

5.
PLoS One ; 14(7): e0219159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291317

RESUMO

Nitrification in terrestrial soils is one of the major processes of emission of nitrous oxide (N2O), a potent greenhouse gas and stratospheric-ozone-depleting substance. We assessed the fraction of N2O emission associated with nitrification in soil through a meta-analysis and sensitivity analysis using a process-based model. We corrected observational values of gross nitrification and associated N2O emission rates from 71 records for various soils in the world spanning from 0.006% to 29.5%. We obtained a median value of 0.14%, and then assessed how the nitrification-associated N2O emission fraction has been considered in terrestrial nitrogen cycle models. Using a process-based biogeochemical model, we conducted a series of sensitivity analyses for the effects of different values of nitrification-associated N2O emission fraction on soil N2O emission. Using an empirical relationship between soil pH and nitrification-associated N2O emission fraction, the model well simulated global emission patterns (global total in the 2000s, 16.8 Tg N2O yr-1). Differences in the nitrification-associated N2O emission fraction caused differences in total N2O emission of as much as 2.5 Tg N2O yr-1. Therefore, to obtain reliable estimation of soil N2O emission for nitrogen and climate management, it is important to constrain the parameterization in models by ensuring extensive and accurate observations.


Assuntos
Óxido Nitroso/análise , Solo/química , Algoritmos , Concentração de Íons de Hidrogênio , Nitrificação , Ciclo do Nitrogênio
6.
Sci Total Environ ; 676: 40-52, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31029899

RESUMO

The regional budget of methane (CH4) emissions for East Asia, a crucial region in the global greenhouse gas budget, was quantified for 1990-2015 with a bottom-up method based on inventories and emission model simulations. Anthropogenic emissions associated with fossil fuel extraction, industrial activities, waste management, and agricultural activities were derived from the Emission Database for Global Atmospheric Research version 4.3.2 and compared with other inventories. Emissions from natural wetlands and CH4 uptake by upland soil oxidation were estimated using the Vegetation Integrative SImulator for Trace gases (VISIT), a biogeochemical model that considers historical land use and climatic conditions. Emissions from biomass burning and termites were calculated using satellite and land-use data combined with empirical emission factors. The resulting average annual estimated CH4 budget for 2000-2012 indicated that East Asia was a net source of 67.3 Tg CH4 yr-1, of which 88.8% was associated with anthropogenic emissions. The uncertainty (±standard deviation) of this estimate, ±14 Tg CH4 yr-1, stemmed from data and model inconsistencies. The increase of the net flux from 60.2 Tg CH4 yr-1 in 1990 to 78.0 Tg CH4 yr-1 in 2012 was due mainly to increased emissions by the fossil fuel extraction and livestock sectors. Our results showed that CH4 was a crucial component of the regional greenhouse gas budget. A spatial analysis using 0.25°â€¯× 0.25° grid cells revealed emission hotspots in urban areas, agricultural areas, and wetlands. These hotspots were surrounded by weak sinks in upland areas. The estimated natural and anthropogenic emissions fell within the range of independent estimates, including top-down estimates from atmospheric inversion models. Such a regional accounting is an effective way to elucidate climatic forcings and to develop mitigation policies. Further studies, however, are required to reduce the uncertainties in the budget.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA