Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Surg Neurol Int ; 13: 161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509560

RESUMO

Background: Selective amygdalohippocampectomy (SA) is an effective treatment for drug-resistant cases of epilepsy due to hippocampal sclerosis (HS). However, its neurocognitive outcomes are inconsistent across the previous studies, pointing to potential location-specific confounders. Here, we investigated the neurocognitive outcomes of SA in an Iranian center recently adopting this approach. Methods: Thirty adults (53.3% of females, age 31.4 ± 6.2 years) with drug-resistant epilepsy due to HS were included in the study. Patients were stratified into surgical (n = 15) and medical (n = 15) treatment groups based on their preferences. Neurocognitive function was assessed before and 6 months after intervention using Wisconsin Card Sorting Test (WCST), Wechsler Adult Intelligence Scale-Revised, and Wechsler Memory Scale- Third Edition (WMS-III). Postintervention performance changes were compared between the two groups, and predictors of worse postoperative outcomes were investigated. Results: Longitudinal changes of performance in WMS-III and WCST were significantly different between the surgically and medically treated patients. Postoperative WMS-III performance showed an average 25% decline (mean ∆T2-T1 = -25.1%, T = -6.6, P < 0.001), and WCST performance improved by an average of 49% (mean ∆T2-T1 = +49.1%, T = 4.6, P < 0.001). The decline in memory performance was more severe in the left-sided surgery and in patients with higher baseline education (mean ∆T2-T1 = -31.1%, T = -8.9, P < 0.001). Conclusion: In our center, executive functioning improved or remained stable after SA, but memory functions declined moderately. The left-sided SA and higher education were associated with more severe decline in memory functions, highlighting the need for special considerations for these groups.

2.
Front Hum Neurosci ; 15: 608285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679343

RESUMO

BACKGROUND AND OBJECTIVES: Focal cortical dysplasia (FCD) is a type of malformations of cortical development and one of the leading causes of drug-resistant epilepsy. Postoperative results improve the diagnosis of lesions on structural MRIs. Advances in quantitative algorithms have increased the identification of FCD lesions. However, due to significant differences in size, shape, and location of the lesion in different patients and a big deal of time for the objective diagnosis of lesion as well as the dependence of individual interpretation, sensitive approaches are required to address the challenge of lesion diagnosis. In this research, a FCD computer-aided diagnostic system to improve existing methods is presented. METHODS: Magnetic resonance imaging (MRI) data were collected from 58 participants (30 with histologically confirmed FCD type II and 28 without a record of any neurological prognosis). Morphological and intensity-based features were calculated for each cortical surface and inserted into an artificial neural network. Statistical examinations evaluated classifier efficiency. RESULTS: Neural network evaluation metrics-sensitivity, specificity, and accuracy-were 96.7, 100, and 98.6%, respectively. Furthermore, the accuracy of the classifier for the detection of the lobe and hemisphere of the brain, where the FCD lesion is located, was 84.2 and 77.3%, respectively. CONCLUSION: Analyzing surface-based features by automated machine learning can give a quantitative and objective diagnosis of FCD lesions in presurgical assessment and improve postsurgical outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA