RESUMO
In this study, we investigated the possible biological factors affecting the survival of the African swine fever virus (ASFV) in the environment and their potential to influence the ecology of the ASFV. Specifically, we tested the survival and replication of ASFV in four phylogenetically distinct organisms: Paramecium caudatum, Dendrobaena alpine, Aedes aegypti andXeropicta derbentina using qReal-Time PCR and hemadsorbtion analysis. Levels of ASFV in earthworms (Dendrobaena alpina) and soil declined at similar rates, suggesting that earthworms likely have no influence on the ecology of the ASFV. Ciliates (Paramecium caudatum) significantly increase the rate of ASFV disappearance from the aquatic environment, probably using the virus as a food source. Mosquitoes (Aedes aegypti) do not provide significant support for the persistence of ASF virus in the environment, with no evidence for transmission to their offspring or pigs that ingested mosquitoes. ASFV persisted for much longer in air-breathing land snails (Xeropicta derbentina) than in the soil. Moreover, transcription of viral genes was maintained within the snail, although the question of full-fledged viral replication is still open. In addition, the active movements of snails suggests that they could play a role in the spread of the virus. The virus is likely to be localized in the intestines of snails as it is regularly excreted from their feces. These results highlight the importance of investigating invertebrates for understanding ASFV surviving, spreading and transmission in natural populations with zoonotic transmission potential.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Vírus da Febre Suína Africana/genética , Animais , Ecossistema , Modelos Teóricos , Suínos , Replicação ViralRESUMO
We present an easy test for rapid visualization of viral DNA assemblies in infected cell cytoplasm. We selected the best stains for nuclear staining: Nile blue A, Bismarck brown, gallocyanin chrome alum, methyl green pyronin and azure II. None of the staining techniques is fluorescent, which facilitates their use in everyday experiments. Methyl green is most promising for routine detection of viral DNA assemblies in the cytoplasm; the procedure enables ready detection of viral DNA accumulation in the cytoplasm.
Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Citoplasma/virologia , DNA Viral/análise , Macrófagos Alveolares/virologia , Coloração e Rotulagem/métodos , Animais , Corantes Azur , Verde de Metila , Oxazinas , Suínos , Montagem de VírusRESUMO
AIM: First cases of clinically uncommon African swine fever (ASF), caused by virus genotype II are described in this article. These cases occurred in Armenia, Tavush region, Dilijan municipality in 2011. The aim of this study was to identify and describe the new pathogenic forms of ASF in Armenia. MATERIALS AND METHODS: The isolation and identification of ASF virus (ASFV) were carried out using conventional techniques. Clinical signs of infection were recorded daily. Gross anatomical pathology characteristics were observed during routine postmortem examinations. Blood and serum were obtained by puncture of the jugular vein using a vacutainer system. RESULTS: The presence of ASFV DNA in the spleens was confirmed by polymerase chain reaction. Sequenced sections of p72 showed phylogenetic identity to genotype 2. The pathology exhibits unusual manifestations of the main disease. The unusual form of ASF demonstrates characteristics of a subacute form of the disease, with the possibility of conversion to a chronic form. Decreased lethality, low level of hemorrhages, and absence of severe pancytopenia in smears from spleen, lymph nodes, and blood are common features of the new form of ASF. Unlike severe thrombocytopenia in the typical ASF, the unusual form exhibited moderate or minor decrease of this feature. Despite a moderate decrease in hemadsorption titers, the unusual pattern of the disease was characterized by viremia and the presence of the virus in the visceral organs, including the brain. CONCLUSION: Our data allow assuming that new nosological form of ASF (genotype II) may present as a transitional form of the disease with the possibility of chronization.
RESUMO
AIM: Atypical lymphocytes usually described as lymphocytes with altered shape, increased DNA amount, and larger size. For analysis of cause of genesis and source of atypical lymphocytes during African swine fever virus (ASFV) infection, bone marrow, peripheral blood, and in vitro model were investigated. MATERIALS AND METHODS: Atypical lymphocytes under the influence of ASFV were studied for morphologic, cytophotometric, and membrane surface marker characteristics and were used in vivo and in vitro models. RESULTS: This study indicated the increased size, high metabolic activity, and the presence of additional DNA amount in atypical lymphocytes caused by ASFV infection. Furthermore, in atypical lymphocytes, nuclear-cytoplasmic ratio usually decreased, compared to normal lymphocytes. In morphology, they looking like lymphocytes transformed into blasts by exposure to mitogens or antigens in vitro. They vary in morphologic detail, but most of them are CD2 positive. CONCLUSIONS: Our data suggest that atypical lymphocytes may represent an unusual and specific cellular response to ASFV infection.