Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 14(1): 7490, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980406

RESUMO

Serine/threonine kinase, cell division cycle 7 (CDC7) is critical for initiating DNA replication. TAK-931 is a specific CDC7 inhibitor, which is a next-generation replication stress (RS) inducer. This study preclinically investigates TAK-931 antitumor efficacy and immunity regulation. TAK-931 induce RS, generating senescence-like aneuploid cells, which highly expressed inflammatory cytokines and chemokines (senescence-associated secretory phenotype, SASP). In vivo multilayer-omics analyses in gene expression panel, immune panel, immunohistochemistry, RNA sequencing, and single-cell RNA sequencing reveal that the RS-mediated aneuploid cells generated by TAK-931 intensively activate inflammatory-related and senescence-associated pathways, resulting in accumulation of tumor-infiltrating immune cells and potent antitumor immunity and efficacy. Finally, the combination of TAK-931 and immune checkpoint inhibitors profoundly enhance antiproliferative activities. These findings suggest that TAK-931 has therapeutic antitumor properties and improved clinical benefits in combination with conventional immunotherapy.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Humanos , Proteínas de Ciclo Celular/metabolismo , Inibidores de Checkpoint Imunológico , Proteínas Serina-Treonina Quinases/metabolismo , Aneuploidia , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Br J Cancer ; 126(12): 1815-1823, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35184156

RESUMO

BACKGROUND: Combination therapy based on radiotherapy and immune checkpoint inhibitors (ICIs) was recently reported as effective for various cancers. The radiation-induced immune response (RIIR) is an essential feature in ICI-combined radiotherapy; however, the effects of drugs used concomitantly with RIIR remain unclear. We screened for drugs that can modify RIIR to understand the mutual relationship between radiotherapy and combined drugs in ICI-combined radiotherapy. METHODS: We established a high-throughput system with reporter gene assays for evaluating RIIR, focusing on factors acting downstream of the STING-IRF pathway, which can stimulate cancer cells, T cells, and dendritic cells. We further quantified the effects of 2595 drugs, including those approved by the Food and Drug Administration, on RIIR in vitro. RESULTS: The reporter assay results correlated well with the expression of immune response proteins such as programmed death-ligand 1. This high-throughput system enabled the identification of drugs including cytotoxic agents, molecular-targeted agents, and other agents that activate or suppress RIIR. CONCLUSIONS: Our study provides an encyclopedic catalogue of clinically approved drugs based on their effect on RIIR. In ICIs combined radiotherapy, activation of STING-IFN may improve the therapeutic effect and our result could form a biological basis for further clinical trials combining radiotherapy with ICIs.


Assuntos
Anticorpos Monoclonais , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Humanos , Inibidores de Checkpoint Imunológico , Imunidade , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/radioterapia , Preparações Farmacêuticas
3.
Cancer Sci ; 113(4): 1352-1361, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35133062

RESUMO

Radiotherapy (RT) combined with immune checkpoint inhibitors has recently produced outstanding results and is expected to be adaptable for various cancers. However, the precise molecular mechanism by which immune reactions are induced by fractionated RT is still controversial. We aimed to investigate the mechanism of the immune response regarding multifractionated, long-term radiation, which is most often combined with immunotherapy. Two human esophageal cancer cell lines, KYSE-450 and OE-21, were irradiated by fractionated irradiation (FIR) daily at a dose of 3 Gy in 5 d/wk for 2 weeks. Western blot analysis and RNA sequencing identified type I interferon (IFN) and the stimulator of IFN genes (STING) pathway as candidates that regulate immune response by FIR. We inhibited STING, IFNAR1, STAT1, and IFN regulatory factor 1 (IRF1) and investigated the effects on the immune response in cancer cells and the invasion of surrounding immune cells. We herein revealed type I IFN-dependent immune reactions and the positive feedback of STING, IRF1, and phosphorylated STAT1 induced by FIR. Knocking out STING, IFNAR1, STAT1, and IRF1 resulted in a poorer immunological response than that in WT cells. The STING-KO KYSE-450 cell line showed significantly less invasion of PBMCs than the WT cell line under FIR. In the analysis of STING-KO cells and migrated PBMCs, we confirmed the occurrence of STING-dependent immune activation under FIR. In conclusion, we identified that the STING-IFNAR1-STAT1-IRF1 axis regulates immune reactions in cancer cells triggered by FIR and that the STING pathway also contributes to immune cell invasion of cancer cells.


Assuntos
Neoplasias Esofágicas , Imunidade , Fator Regulador 1 de Interferon , Fator de Transcrição STAT1 , Linhagem Celular/efeitos da radiação , Neoplasias Esofágicas/genética , Humanos , Imunidade/efeitos da radiação , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/efeitos da radiação , Interferon Tipo I , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/efeitos da radiação , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/efeitos da radiação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/efeitos da radiação
4.
Sci Rep ; 10(1): 21762, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303839

RESUMO

Amplification and/or overexpression of human epidermal growth factor receptor 2 (HER2) are observed in 15-20% of breast cancers (HER2+ breast cancers), and anti-HER2 therapies have significantly improved prognosis of patients with HER2+ breast cancer. One resistance mechanism to anti-HER2 therapies is constitutive activation of the phosphoinositide 3-kinase (PI3K) pathway. Combination therapy with small-molecule inhibitors of AKT and HER2 was conducted in HER2+ breast cancer cell lines with or without PIK3CA mutations, which lead to constitutive activation of the PI3K pathway. PIK3CA mutations played important roles in resistance to single-agent anti-HER2 therapy in breast cancer cell lines. Combination therapy of a HER2 inhibitor and an AKT inhibitor, as well as other PI3K pathway inhibitors, could overcome the therapeutic limitations associated with single-agent anti-HER2 treatment in PIK3CA-mutant HER2+ breast cancer cell lines. Furthermore, expression of phosphorylated 4E-binding protein 1 (p4EBP1) following the treatment correlated with the antiproliferative activities of the combination, suggesting that p4EBP1 may have potential as a prognostic and/or efficacy-linking biomarkers for these combination therapies in patients with HER2+ breast cancer. These findings highlight potential clinical strategies using combination therapy to overcome the limitations associated with single-agent anti-HER2 therapies in patients with HER2+ breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Humanos , Mutação , Fosforilação , Proteínas de Ligação a RNA/metabolismo
5.
Mol Cancer Res ; 17(11): 2233-2243, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31467113

RESUMO

Despite the worldwide approval of three generations of EGFR tyrosine kinase inhibitors (TKI) for advanced non-small cell lung cancers with EGFR mutations, no TKI with a broad spectrum of activity against all clinically relevant mutations is currently available. In this study, we sought to evaluate a covalent mutation-specific EGFR TKI, TAS6417 (also named CLN-081), with the broadest level of activity against EGFR mutations with a prevalence of ≥1%. Lung cancer and genetically engineered cell lines, as well as murine xenograft models were used to evaluate the efficacy of TAS6417 and other approved/in-development EGFR TKIs (erlotinib, afatinib, osimertinib, and poziotinib). We demonstrate that TAS6417 is a robust inhibitor against the most common EGFR mutations (exon 19 deletions and L858R) and the most potent against cells harboring EGFR-T790M (first/second-generation TKI resistance mutation). In addition, TAS6417 has activity in cells driven by less common EGFR-G719X, L861Q, and S768I mutations. For recalcitrant EGFR exon 20 insertion mutations, selectivity indexes (wild-type EGFR/mutant EGFR ratio of inhibition) favored TAS6417 in comparison with poziotinib and osimertinib, indicating a wider therapeutic window. Taken together, we demonstrate that TAS6417 is a potent EGFR TKI with a broad spectrum of activity and a wider therapeutic window than most approved/in-development generations of EGFR inhibitors. IMPLICATIONS: TAS6417/CLN-081 is a potent EGFR TKI with a wide therapeutic window and may be effective in lung cancer patients with clinically relevant EGFR mutations.


Assuntos
Antineoplásicos/farmacologia , Derivados de Benzeno/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas/farmacologia , Afatinib/farmacologia , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Éxons/genética , Humanos , Indolizinas , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/genética , Mutação , Quinazolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA