Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pathogens ; 12(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37887746

RESUMO

Hepatitis E virus (HEV) is a positive-sense single-stranded RNA virus and a major cause of acute viral hepatitis. HEV is responsible for 20 million infections worldwide in humans every year. HEV-3 and HEV-4 are zoonotic and are responsible for most of the HEV cases in developed countries. Consumption of contaminated pig meat or pig products is considered to be the main transmission route of HEV HEV-3 in Europe. Prevalence studies for HEV generally use PCR methods to detect the presence or absence of genomic RNA. However, these methods do not discriminate infectious virus particles from non-infectious material. Previously developed HEV cell culture systems only worked with high efficiency after cell line adaptation of the subjected virus strains. In this manuscript, the development of a culture system for the detection of infectious HEV strains is described. For this purpose, we optimized the isolation and the growth of primary hepatocytes from young piglets. Subsequently, the isolated hepatocytes were used to culture HEV of different origins, such as liver tissue samples and sausage samples. This method can be applied to better assess the risk of infection through consumption of food products associated with HEV RNA contamination.

2.
Microorganisms ; 11(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838465

RESUMO

Pigs are a reservoir of hepatitis E virus (HEV), which causes hepatitis in humans. To study the epidemiology of HEV in pig farms, sampling methods are currently used that cause discomfort to pigs, such as rectal sampling. In line with the 3Rs principle, we aimed to evaluate non-invasive methods to detect pens with HEV-shedding pigs. Twenty-eight pens of one farm were sampled cross-sectionally. Individual rectal swabs (IRS) were collected to determine prevalence within pens. Four pen-level samples were compared: a pool of IRS per pen (P), boot socks (BS), oral fluid (OF) and pooled faecal droppings (FD). Each sample was tested by RT-PCR and the sensitivity and specificity of each method was determined by Bayesian latent class analysis. According to IRS, 19/28 pens were HEV positive. BS had a sensitivity of 95% and detected HEV in pens with 10% of pigs shedding; however, specificity was below 30%. FD were comparably accurate to P, with a sensitivity and specificity of 94% and 86%, respectively. BS sampling is thus advised to detect early shedding of HEV or pen contamination, and FD to determine the duration of shedding. This study demonstrates that non-invasive sampling can replace rectal swabs in research on HEV in pigs.

3.
Pathogens ; 11(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558868

RESUMO

Wind-supported transport of particle matter (PM) contaminated with excreta from highly pathogenic avian influenza virus (HPAIv)-infected wild birds may be a HPAIv-introduction pathway, which may explain infections in indoor-housed poultry. The primary objective of our study was therefore to measure the nature and quantity of PM entering poultry houses via air-inlets. The air-inlets of two recently HPAIv-infected poultry farms (a broiler farm and a layer farm) were equipped with mosquito-net collection bags. PM was harvested every 5 days for 25 days. Video-camera monitoring registered wild bird visits. PM was tested for avian influenza viruses (AIV), Campylobacter and Salmonella with PCR. Insects, predominantly mosquitoes, were tested for AIV, West Nile, Usutu and Schmallenberg virus. A considerable number of mosquitoes and small PM amounts entered the air-inlets, mostly cobweb and plant material, but no wild bird feathers. Substantial variation in PM entering between air-inlets existed. In stormy periods, significantly larger PM amounts may enter wind-directed air-inlets. PM samples were AIV and Salmonella negative and insect samples were negative for all viruses and bacteria, but several broiler and layer farm PM samples tested Campylobacter positive. Regular wild (water) bird visits were observed near to the poultry houses. Air-borne PM and insects-potentially contaminated with HPAIv or other pathogens-can enter poultry air-inlets. Implementation of measures limiting this potential introduction route are recommended.

4.
Transbound Emerg Dis ; 69(6): 3881-3895, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36404584

RESUMO

Wild rats can host various zoonotic pathogens. Detection of these pathogens is commonly performed using molecular techniques targeting one or a few specific pathogens. However, this specific way of surveillance could lead to (emerging) zoonotic pathogens staying unnoticed. This problem may be overcome by using broader microbiome-profiling techniques, which enable broad screening of a sample's bacterial or viral composition. In this study, we investigated if 16S rRNA gene amplicon sequencing would be a suitable tool for the detection of zoonotic bacteria in wild rats. Moreover, we used virome-enriched (VirCapSeq) sequencing to detect zoonotic viruses. DNA from kidney samples of 147 wild brown rats (Rattus norvegicus) and 42 black rats (Rattus rattus) was used for 16S rRNA gene amplicon sequencing of the V3-V4 hypervariable region. Blocking primers were developed to reduce the amplification of rat host DNA. The kidney bacterial composition was studied using alpha- and beta-diversity metrics and statistically assessed using PERMANOVA and SIMPER analyses. From the sequencing data, 14 potentially zoonotic bacterial genera were identified from which the presence of zoonotic Leptospira spp. and Bartonella tribocorum was confirmed by (q)PCR or Sanger sequencing. In addition, more than 65% of all samples were dominated (>50% reads) by one of three bacterial taxa: Streptococcus (n = 59), Mycoplasma (n = 39) and Leptospira (n = 25). These taxa also showed the highest contribution to the observed differences in beta diversity. VirCapSeq sequencing in rat liver samples detected the potentially zoonotic rat hepatitis E virus in three rats. Although 16S rRNA gene amplicon sequencing was limited in its capacity for species level identifications and can be more difficult to interpret due to the influence of contaminating sequences in these low microbial biomass samples, we believe it has potential to be a suitable pre-screening method in the future to get a better overview of potentially zoonotic bacteria that are circulating in wildlife.


Assuntos
Infecções por Bartonella , Microbiota , Doenças dos Roedores , Animais , Ratos , RNA Ribossômico 16S/genética , Animais Selvagens , Bactérias/genética , Infecções por Bartonella/microbiologia , Infecções por Bartonella/veterinária , Microbiota/genética , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/microbiologia
5.
Viruses ; 14(8)2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36016375

RESUMO

SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health.


Assuntos
COVID-19 , Fazendas , Vison , SARS-CoV-2 , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Feminino , Masculino , Vison/virologia , Países Baixos/epidemiologia , Fatores de Risco , SARS-CoV-2/isolamento & purificação
6.
Transbound Emerg Dis ; 69(6): 3339-3349, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35988158

RESUMO

In the Netherlands, 69 of the 126 (55%) mink farms in total became infected with SARS-CoV-2 in 2020. Despite strict biosecurity measures and extensive epidemiological investigations, the main transmission route remained unclear. A better understanding of SARS-CoV-2 transmission between mink farms is of relevance for countries where mink farming is still common practice and can be used as a case study to improve future emerging disease preparedness. We assessed whether SARS-CoV-2 spilled over from mink to free-ranging animals, and whether free-ranging animals may have played a role in farm-to-farm transmission in the Netherlands. The study encompassed farm visits, farm questionnaires, expert workshops and SARS-CoV-2 RNA and antibody testing of samples from target animal species (bats, birds and free-ranging carnivores). In this study, we show that the open housing system of mink allowed access to birds, bats and most free-ranging carnivores, and that direct and indirect contact with mink was likely after entry, especially for free-ranging carnivores and birds. This allowed SARS-CoV-2 exposure to animals entering the mink farm, and subsequent infection or mechanical carriage by the target animal species. Moreover, mink can escape farms in some cases, and two SARS-CoV-2-positive mink were found outside farm premises. No other SARS-CoV-2-RNA-positive free-ranging animals were detected, suggesting there was no abundant circulation in the species tested during the study period. To investigate previous SARS-CoV-2 infections, SARS-CoV-2 antibody detection using lung extracts of carcasses was set up and validated. One tested beech marten did have SARS-CoV-2 antibodies, but the closest SARS-CoV-2-infected mink farm was outside of its home range, making infection at a mink farm unlikely. Knowing that virus exchange between different species and the formation of animal reservoirs affects SARS-CoV-2 evolution, continued vigilance and monitoring of mink farms and surrounding wildlife remains vital.


Assuntos
COVID-19 , Quirópteros , Mustelidae , Animais , Vison , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/veterinária , Países Baixos/epidemiologia , RNA Viral , Fazendas
7.
Vet Res ; 53(1): 50, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799280

RESUMO

Humans can become infected with hepatitis E virus (HEV) by consumption of undercooked pork. To reduce the burden of HEV in humans, mitigation on pig farms is needed. HEV is found on most pig farms globally, yet within-farm seroprevalence estimates vary considerably. Understanding of the underlying variation in infection dynamics within and between farms currently lacks. Therefore, we investigated HEV infection dynamics by sampling 1711 batches of slaughter pigs from 208 Dutch farms over an 8-month period. Four farm types, conventional, organic, and two types with strict focus on biosecurity, were included. Sera were tested individually with an anti-HEV antibody ELISA and pooled per batch with PCR. All farms delivered seropositive pigs to slaughter, yet batches (resembling farm compartments) had varying results. By combining PCR and ELISA results, infection moment and extent per batch could be classified as low transmission, early, intermediate or late. Cluster analysis of batch infection moments per farm resulted in four clusters with distinct infection patterns. Cluster 1 farms delivered almost exclusively PCR negative, ELISA positive batches to slaughter (PCR-ELISA+), indicating relatively early age of HEV infection. Cluster 2 and 3 farms delivered 0.3 and 0.7 of batches with intermediate infection moment (PCR+ELISA+) respectively and only few batches with early infection. Cluster 4 farms delivered low transmission (PCR-ELISA-) and late infection (PCR+ELISA-) batches, demonstrating that those farms can prevent or delay HEV transmission to farm compartments. Farm type partly coincided with cluster assignment, indicating that biosecurity and management are related to age of HEV infection.


Assuntos
Matadouros , Envelhecimento , Fazendas , Hepatite E , Doenças dos Suínos , Suínos , Fatores Etários , Animais , Análise por Conglomerados , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Fazendas/normas , Fazendas/estatística & dados numéricos , Hepatite E/epidemiologia , Hepatite E/transmissão , Hepatite E/veterinária , Hepatite E/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Reação em Cadeia da Polimerase , Estudos Soroepidemiológicos , Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia
8.
Biol Open ; 11(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502829

RESUMO

The COVID-19 pandemic has illustrated the need for the development of fast and reliable testing methods for novel, zoonotic, viral diseases in both humans and animals. Pathologies lead to detectable changes in the volatile organic compound (VOC) profile of animals, which can be monitored, thus allowing the development of a rapid VOC-based test. In the current study, we successfully trained honeybees (Apis mellifera) to identify SARS-CoV-2 infected minks (Neovison vison) thanks to Pavlovian conditioning protocols. The bees can be quickly conditioned to respond specifically to infected mink's odours and could therefore be part of a wider SARS-CoV-2 diagnostic system. We tested two different training protocols to evaluate their performance in terms of learning rate, accuracy and memory retention. We designed a non-invasive rapid test in which multiple bees are tested in parallel on the same samples. This provided reliable results regarding a subject's health status. Using the data from the training experiments, we simulated a diagnostic evaluation trial to predict the potential efficacy of our diagnostic test, which yielded a diagnostic sensitivity of 92% and specificity of 86%. We suggest that a honeybee-based diagnostics can offer a reliable and rapid test that provides a readily available, low-input addition to the currently available testing methods. A honeybee-based diagnostic test might be particularly relevant for remote and developing communities that lack the resources and infrastructure required for mainstream testing methods.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Abelhas , COVID-19/diagnóstico , Humanos , Aprendizagem , Odorantes , Pandemias
9.
Front Microbiol ; 13: 819877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295314

RESUMO

The hepatitis E virus (HEV) is responsible for 20 million infections worldwide per year. Although, HEV infection is mostly self-limiting, immunocompromised individuals may evolve toward chronicity. The lack of an efficient small animal model has hampered the study of HEV and the discovery of anti-HEV therapies. Furthermore, new HEV strains, infectious to humans, are being discovered. Human liver-chimeric mice have greatly aided in the understanding of HEV, but only two genotypes (HEV-1 and HEV-3) have been studied in this model. Moreover, the immunodeficient nature of this mouse model does not allow full investigation of the virus and all aspects of its interaction with the host. Recent studies have shown the susceptibility of regular and nude Balb/c mice to a HEV-4 strain (KM01). This model should allow the investigation of the interplay between HEV and the adaptive immune system of its host, and potential immune-mediated complications. Here, we assess the susceptibility of human liver-chimeric and non-humanised mice to a different HEV-4 strain (BeSW67HEV4-2008). We report that humanised mice could be readily infected with this isolate, resulting in an infection pattern comparable to HEV-3 infection. Despite these results and in contrast to KM01, non-humanised mice were not susceptible to infection with this viral strain. Further investigation, using other HEV-4 isolates, is needed to conclusively determine HEV-4 tropism and mouse susceptibility.

10.
Transbound Emerg Dis ; 69(5): 3001-3007, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34080762

RESUMO

Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2-positive cats and dogs in 10 infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of 10 farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all 10 farms. This study shows evidence of SARS-CoV-2 infection in 12 feral cats and 2 dogs. Eleven cats (18%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10%-18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2.


Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Animais , Animais Selvagens , COVID-19/epidemiologia , COVID-19/veterinária , Doenças do Gato/epidemiologia , Gatos , Doenças do Cão/epidemiologia , Cães , Fazendas , Humanos , Vison , SARS-CoV-2
11.
Nat Commun ; 12(1): 6802, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815406

RESUMO

In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Evolução Molecular , Fazendas , Vison/virologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Sequência de Aminoácidos , Doenças dos Animais/epidemiologia , Doenças dos Animais/transmissão , Doenças dos Animais/virologia , Animais , Teorema de Bayes , Surtos de Doenças , Humanos , Países Baixos/epidemiologia , Filogenia , SARS-CoV-2/isolamento & purificação , Análise de Sequência de Proteína , Glicoproteína da Espícula de Coronavírus/classificação , Glicoproteína da Espícula de Coronavírus/genética
12.
Pathogens ; 10(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209230

RESUMO

In assessing species susceptibility for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and in the search for an appropriate animal model, multiple research groups around the world inoculated a broad range of animal species using various SARS-CoV-2 strains, doses and administration routes. Although in silico analyses based on receptor binding and diverse in vitro cell cultures were valuable, exact prediction of species susceptibility based on these tools proved challenging. Here, we assessed whether precision-cut lung slices (PCLS) could facilitate the selection of animal models, thereby reducing animal experimentation. Pig, hamster and cat PCLS were incubated with SARS-CoV-2 and virus replication was followed over time. Virus replicated efficiently in PCLS from hamsters and cats, while no evidence of replication was obtained for pig PCLS. These data corroborate the findings of many research groups that have investigated the susceptibility of hamsters, pigs and cats towards infection with SARS-CoV-2. Our findings suggest that PCLS can be used as convenient tool for the screening of different animal species for sensitivity to newly emerged viruses. To validate our results obtained in PCLS, we employed the hamster model. Hamsters were inoculated with SARS-CoV-2 via the intranasal route. Susceptibility to infection was evaluated by body weight loss, viral loads in oropharyngeal swabs and respiratory tissues and lung pathology. The broadly used hamster model was further refined by including activity tracking of the hamsters by an activity wheel as a very robust and sensitive parameter for clinical health. In addition, to facilitate the quantification of pathology in the lungs, we devised a semi-quantitative scoring system for evaluating the degree of histological changes in the lungs. The inclusion of these additional parameters refined and enriched the hamster model, allowing for the generation of more data from a single experiment.

13.
Viruses ; 13(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209729

RESUMO

Pigs are suspected to be a major source of zoonotic hepatitis E virus (HEV) infection in industrialized countries, but the transmission route(s) from pigs to humans are ill-defined. Sequence comparison of HEV isolates from pigs with those from blood donors and patients in 372 samples collected in the Netherlands in 1998 and 1999 and between 2008 and 2015 showed that all sequences were genotype 3 except for six patients (with travel history). Subgenotype 3c (gt3c) was the most common subtype. While the proportion of gt3c increased significantly between 1998 and 2008, it remained constant between 2008 and 2015. Among the few circulating HEV subtypes, there was no difference observed between the human and the pig isolates. Hepatitis E viruses in humans are very likely to originate from pigs, but it is unclear why HEV gt3c has become the predominant subtype in the Netherlands.


Assuntos
Doadores de Sangue , Genótipo , Vírus da Hepatite E/genética , Hepatite E/epidemiologia , Análise de Sequência de DNA , Suínos/virologia , Animais , Hepatite E/virologia , Vírus da Hepatite E/classificação , Humanos , Países Baixos/epidemiologia , Filogenia , RNA Viral/genética , Sus scrofa/virologia , Doenças dos Suínos/virologia , Zoonoses Virais/transmissão
14.
Occup Environ Med ; 78(12): 893-899, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34330815

RESUMO

OBJECTIVE: Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. METHODS: Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. RESULTS: Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. CONCLUSIONS: Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities.


Assuntos
Poeira/análise , Exposição Ambiental , Fazendas , Vison/virologia , Exposição Ocupacional , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Animais , Humanos , Países Baixos/epidemiologia
15.
Science ; 371(6525): 172-177, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33172935

RESUMO

Animal experiments have shown that nonhuman primates, cats, ferrets, hamsters, rabbits, and bats can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, SARS-CoV-2 RNA has been detected in felids, mink, and dogs in the field. Here, we describe an in-depth investigation using whole-genome sequencing of outbreaks on 16 mink farms and the humans living or working on these farms. We conclude that the virus was initially introduced by humans and has since evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period, several weeks before detection. Despite enhanced biosecurity, early warning surveillance, and immediate culling of animals in affected farms, transmission occurred between mink farms in three large transmission clusters with unknown modes of transmission. Of the tested mink farm residents, employees, and/or individuals with whom they had been in contact, 68% had evidence of SARS-CoV-2 infection. Individuals for which whole genomes were available were shown to have been infected with strains with an animal sequence signature, providing evidence of animal-to-human transmission of SARS-CoV-2 within mink farms.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Vison , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Zoonoses , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Surtos de Doenças , Fazendas , Humanos , Funções Verossimilhança , Mutação , Países Baixos/epidemiologia , Filogenia , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Sequenciamento Completo do Genoma , Zoonoses/transmissão , Zoonoses/virologia
16.
J Vet Diagn Invest ; 32(5): 710-717, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32757829

RESUMO

Schmallenberg virus (SBV), discovered in Germany in 2011, causes congenital malformations in ruminants. Reverse-transcription real-time PCR (RT-rtPCR) assays based on various segments of SBV have been developed for molecular detection. We developed alternative RT-rtPCR assays for SBV detection to avoid earlier reported mutations and hypervariable regions of the S and M segments of the viral genome. For SYBR Green-based detection of the S segment, the R2 value and efficiency of the developed assay were 0.99 and 99%, respectively. For probe-based S segment detection, 2 assays were developed; the first had an R2 value of 0.99 and 102% efficiency, and the second had a R2 value of 0.98 and 86% efficiency. The probe-based M segment assay had an R2 value of 1.00 and 103% efficiency. Detection limits of the RT-rtPCR assays with new primer sets were 102 and 101 copies/µL for the S and M segments, respectively. Field samples from cattle and sheep were also used for primary validation of the developed assays. Our assays should be suitable for SBV detection in ruminants and for in vitro studies of various SBV strains.


Assuntos
Infecções por Bunyaviridae/veterinária , Doenças dos Bovinos/diagnóstico , Orthobunyavirus/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Doenças dos Ovinos/diagnóstico , Animais , Benzotiazóis , Infecções por Bunyaviridae/diagnóstico , Bovinos , Diaminas , Compostos Orgânicos/química , Quinolinas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Ovinos
17.
Vet Pathol ; 57(5): 653-657, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663073

RESUMO

SARS-CoV-2, the causative agent of COVID-19, caused respiratory disease outbreaks with increased mortality in 4 mink farms in the Netherlands. The most striking postmortem finding was an acute interstitial pneumonia, which was found in nearly all examined mink that died at the peak of the outbreaks. Acute alveolar damage was a consistent histopathological finding in mink that died with pneumonia. SARS-CoV-2 infections were confirmed by detection of viral RNA in throat swabs and by immunohistochemical detection of viral antigen in nasal conchae, trachea, and lung. Clinically, the outbreaks lasted for about 4 weeks but some animals were still polymerase chain reaction-positive for SARS-CoV-2 in throat swabs after clinical signs had disappeared. This is the first report of the clinical and pathological characteristics of SARS-CoV-2 outbreaks in mink farms.


Assuntos
Betacoronavirus , Infecções por Coronavirus/veterinária , Vison/virologia , Pandemias/veterinária , Pneumonia Viral/veterinária , Animais , COVID-19 , Infecções por Coronavirus/patologia , Surtos de Doenças/veterinária , Feminino , Pulmão/patologia , Pulmão/virologia , Masculino , Países Baixos/epidemiologia , Pneumonia Viral/patologia , SARS-CoV-2
18.
Front Vet Sci ; 7: 237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478107

RESUMO

Wild birds are the natural reservoir of the avian influenza virus (AIV) and may transmit AIV to poultry via direct contact or indirectly through the environment. In the Netherlands, a clinically suspected free-range layer flock was reported to the veterinary authorities by the farmer. Increased mortality, a decreased feed intake, and a drop in egg production were observed. Subsequently, an infection with low pathogenic avian influenza virus was detected. This study describes the diagnostic procedures used for detection and subtyping of the virus. In addition to routine diagnostics, the potential of two different environmental diagnostic methods was investigated for detecting AIV in surface water. AIV was first detected using rRT-PCR and isolated from tracheal and cloacal swabs collected from the hens. The virus was subtyped as H10N7. Antibodies against the virus were detected in 28 of the 31 sera tested. An intravenous pathogenicity index (IVPI) experiment was performed, but no clinical signs (IVPI = 0) were observed. Post-mortem examination and histology confirmed the AIV infection. Multiple water samples were collected longitudinally from the free-range area and waterway near the farm. Both environmental diagnostic methods allowed the detection of the H10N7 virus, demonstrating the potential of these methods in detection of AIV. The described methods could be a useful additional procedure for AIV surveillance in water-rich areas with large concentrations of wild birds or in areas around poultry farms. In addition, these methods could be used as a tool to test if the environment or free-range area is virus-free again, at the end of an AIV epidemic.

19.
Euro Surveill ; 25(23)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32553059

RESUMO

Respiratory disease and increased mortality occurred in minks on two farms in the Netherlands, with interstitial pneumonia and SARS-CoV-2 RNA in organ and swab samples. On both farms, at least one worker had coronavirus disease-associated symptoms before the outbreak. Variations in mink-derived viral genomes showed between-mink transmission and no infection link between the farms. Inhalable dust contained viral RNA, indicating possible exposure of workers. One worker is assumed to have attracted the virus from mink.


Assuntos
Infecções por Coronavirus/diagnóstico , Coronavirus/isolamento & purificação , Surtos de Doenças/prevenção & controle , Fazendas , Vison , Pneumonia Viral/diagnóstico , RNA Viral/genética , Análise de Sequência de RNA/veterinária , Animais , Anticorpos Antivirais/imunologia , Betacoronavirus/imunologia , COVID-19 , Coronavirus/genética , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Surtos de Doenças/veterinária , Genoma Viral , Países Baixos , Pandemias/veterinária , Pneumonia Viral/transmissão , Pneumonia Viral/veterinária , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA