Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 62(18): N436-N444, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28742061

RESUMO

The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm × 10 cm field size agreed with the results of ionization chamber measurements within ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.


Assuntos
Compostos de Boro/química , Teste de Materiais , Fótons/uso terapêutico , Radiometria/instrumentação , Radiometria/métodos , Radioterapia de Alta Energia/instrumentação , Diamante/química , Elétrons , Reprodutibilidade dos Testes , Silício/química
2.
Nature ; 537(7619): 220-224, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27509851

RESUMO

African climate is generally considered to have evolved towards progressively drier conditions over the past few million years, with increased variability as glacial-interglacial change intensified worldwide. Palaeoclimate records derived mainly from northern Africa exhibit a 100,000-year (eccentricity) cycle overprinted on a pronounced 20,000-year (precession) beat, driven by orbital forcing of summer insolation, global ice volume and long-lived atmospheric greenhouse gases. Here we present a 1.3-million-year-long climate history from the Lake Malawi basin (10°-14° S in eastern Africa), which displays strong 100,000-year (eccentricity) cycles of temperature and rainfall following the Mid-Pleistocene Transition around 900,000 years ago. Interglacial periods were relatively warm and moist, while ice ages were cool and dry. The Malawi record shows limited evidence for precessional variability, which we attribute to the opposing effects of austral summer insolation and the temporal/spatial pattern of sea surface temperature in the Indian Ocean. The temperature history of the Malawi basin, at least for the past 500,000 years, strongly resembles past changes in atmospheric carbon dioxide and terrigenous dust flux in the tropical Pacific Ocean, but not in global ice volume. Climate in this sector of eastern Africa (unlike northern Africa) evolved from a predominantly arid environment with high-frequency variability to generally wetter conditions with more prolonged wet and dry intervals.


Assuntos
Clima , Chuva , África Oriental , Alcanos/análise , Atmosfera/química , Cálcio/análise , Dióxido de Carbono/análise , Clima Desértico , Poeira/análise , História Antiga , Gelo/análise , Oceano Índico , Lagos , Malaui , Folhas de Planta/química , Plantas , Estações do Ano , Temperatura , Ceras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA