RESUMO
Pulsed-laser testing is an attractive tool for studying space-based radiation effects in microelectronics because it provides a high degree of spatial resolution and is more cost-effective than conventional accelerator-based testing. However, quantitatively predicting the effects of radiation is challenging for this optical method. A new approach to pulsed-laser testing is presented, which addresses these challenges by using a Bessel beam and carrier generation via two-photon absorption. By producing a carrier distribution in the device under test that is similar to that of a heavy ion, this optical approach aims to quantitatively predict the response of the device under heavy ion tests that represent space radiation. Furthermore, the carrier distribution can be accurately described using a single analytic expression thereby enabling the laser to be tuned to emulate a specific heavy ion. Herein, we describe the modifications made to an existing pulsed-laser setup to generate this carrier distribution, characterize this distribution using a novel method that provides sub-micron spatial resolution, and provide the equations that describe the distribution. Finally, we use this method to study a silicon photodiode and find that the transient response of the device shows strong agreement with the response generated using heavy ions.
RESUMO
We extend the recently developed dual-arm Z-scan to increase the signal-to-noise ratio (SNR) for measuring the nonlinear refraction (NLR) of thin films on thick substrates. Similar to the case of solutes in solution, the phase shift due to NLR in a thin film can often be dominated by the phase shift due to NLR in the much thicker substrate. SNR enhancement is accomplished by simultaneously scanning a bare substrate and the film plus substrate in two separate but identical Z-scan arms. The subtraction of these signals taken simultaneously effectively cancels the nonlinear signal from the substrate, leaving only the signal from the film. More importantly, the SNR is increased since the correlated noise from effects such as beam-pointing instabilities cancels. To show the versatility of the dual-arm Z-scan method, we perform measurements on semiconductor and organic thin films, some less than 100 nm thick and with thicknesses up to 4 orders of magnitude less than the substrate.
RESUMO
Cuboid-shaped organic microcavities containing a pyrromethene laser dye and supported upon a photonic crystal have been investigated as an approach to reducing the lasing threshold of the cavities. Multiphoton lithography facilitated fabrication of the cuboid cavities directly on the substrate or on the decoupling structure, while similar structures were fabricated on the substrate by UV lithography for comparison. Significant reduction of the lasing threshold by a factor of ~30 has been observed for cavities supported by the photonic crystal relative to those fabricated on the substrate. The lasing mode spectra of the cuboid microresonators provide strong evidence showing that the lasing modes are localized in the horizontal plane, with the shape of an inscribed diamond.
RESUMO
Herein, the synthesis and properties of alkyne-bridged carbocations, which are analogous in structure to cyanine dyes, are reported. An alkene-bridged dye, linked at the third position of the indole, was also synthesized as a reference compound. These new carbocations are stable under ambient conditions, allowing characterization by UV/Vis and NMR ((1)H and (13)C) spectroscopies. These techniques revealed a large degree of delocalization of the positive charge, similar to a previously reported porphyrin carbocation. The linear and nonlinear optical properties are compared with cyanine dyes and triarylmethyl cations, to investigate the effects of the bond-length alternation and the overall molecular geometry. The value of Re(γ), the real part of the third-order microscopic polarizability, of -1.3×10(-33) â esu for the alkyne-linked cation is comparable to that of a cyanine dye of similar length. Nondegenerate two-photon absorption spectra showed that the alkene-bridged dye exhibited characteristics of cyanines, whereas the alkyne-bridged dye is reminiscent of octupolar chromophores, such as the triarylmethyl carbocation brilliant green. Such attributes were confirmed and rationalized by quantum chemical calculations.
Assuntos
Alcinos/síntese química , Carbocianinas/síntese química , Corantes/síntese química , Alcinos/química , Carbocianinas/química , Corantes/química , Indóis/química , Espectroscopia de Ressonância Magnética , Estrutura MolecularRESUMO
A series of anionic polymethine dyes with different aromatic counterions are prepared to improve their compatibility as guests in an amorphous polycarbonate host. When they are used as the cladding material for silicon hybrid slot waveguides, four-wave mixing wavelength conversion and two-photon absorption-based optical-power modulation are observed. Such guest-host materials may be attractive candidates for all-optical signal-processing applications.
Assuntos
Corantes/síntese química , Indóis/química , Compostos Orgânicos/química , Cimento de Policarboxilato/química , Silício/química , Ânions , Misturas Complexas/síntese química , Teste de Materiais , Dinâmica não Linear , Sais/químicaRESUMO
The linear and nonlinear optical properties of Ag/Au bilayer metallic thin films with a total thickness of around 20 nm and with different Ag/Au mass-thickness ratios were studied. This study shows that the spectral dispersion of the effective refractive index of bilayer films can be tuned by controlling the mass-thickness ratio between Au and Ag. Improvement of the figure-of-merit for potential plasmonic applications and linear optical filters in the visible spectral range are reported and discussed. The nonlinear optical properties of bilayer metal films studied using femtosecond white-light continuum pump-probe experiments are also shown to be tunable with this ratio. The nonlinear change of optical path length is extracted from the pump-probe data and agrees with simulated values derived from a combination of the two-temperature model, describing the ultrafast electron heating dynamics, and a physical model that describes the dielectric permittivity of Au as a function of electron and lattice temperature.
RESUMO
A practical yet accurate dispersion model for the molecular first hyperpolarizability ß is presented, incorporating both homogeneous and inhomogeneous line broadening because these affect the ß dispersion differently, even if they are indistinguishable in linear absorption. Consequently, combining the absorption spectrum with one free shape-determining parameter Ginhom, the inhomogeneous line width, turns out to be necessary and sufficient to obtain a reliable description of the ß dispersion, requiring no information on the homogeneous (including vibronic) and inhomogeneous line broadening mechanisms involved, providing an ideal model for practical use in extrapolating experimental nonlinear optical (NLO) data. The model is applied to the efficient NLO chromophore picolinium quinodimethane, yielding an excellent fit of the two-photon resonant wavelength-dependent data and a dependable static value ß0 = 316 × 10(-30) esu. Furthermore, we show that including a second electronic excited state in the model does yield an improved description of the NLO data at shorter wavelengths but has only limited influence on ß0.
RESUMO
Cyanine-like dyes are promising candidates for third-order nonlinear optical (NLO) applications such as all-optical switching. Here, we examine the consequences for linear and nonlinear optical properties of varying substituents on the central methine unit of bis(dioxaborine)-terminated anionic pentamethines and bis(indole)-terminated cationic heptamethines. The variation in absorption maxima and electrochemical potentials with structure can generally be rationalized using the Dewar-Knott rules, providing that mesomeric and inductive electron-withdrawal and donation are explicitly considered. In the case of nitro- and (dioxaborinyl)vinyl-substituted bis(dioxaborine) pentamethines, the low-energy transitions are significantly broadened, consistent with (1)H NMR spectra indicating deviation from cyanine-like geometry. Real and imaginary parts of the third-order polarizabilities, Re(γ) and Im(γ), were measured at 1.3 µm. The values of Im(γ) indicate that the values of Re(γ) are significantly resonantly enhanced, while the positive value of Re(γ) found for a nitro-substituted dioxaborine example is atypical for a symmetrical polymethine and suggests that a two-state treatment is inadequate. The relevance of these results to chromophore design for third-order NLO applications is discussed.
RESUMO
Rh(III) and Ir(III) can be complexed to bipyridine groups attached to the termini of bis(dioxaborine)-capped heptamethines; these chromophores exhibit large third-order polarisabilities at 1.55 µm, while retaining good film-forming properties and linear optical transparency in the near infrared.
RESUMO
The nonlinear optical (NLO) properties of induced transmission filters (ITFs) based on Ag are experimentally determined using white light continuum pump-probe measurements. The experimental results are supported using simulations based on the matrix transfer method. The magnitude of the NLO response is shown to be 30 times that of an isolated Ag film of comparable thickness. The impacts of design variations on the linear and NLO response are simulated. It is shown that the design can be modified to enhance the NLO response of an ITF by a factor of 2 or more over a perfectly matched ITF structure.
Assuntos
Óptica e Fotônica , Simulação por Computador , Elétrons , Desenho de Equipamento , Ouro/química , Metais/química , Modelos Estatísticos , Semicondutores , Prata/química , Temperatura , Fatores de TempoRESUMO
Gold nanoparticles (ca. 3 nm in diameter) coated with bis(diarylamino)biphenyl-based thiols with two different alkyl spacers (propyl and dodecyl) between the chromophore and the surface-anchoring thiol group have been prepared and characterized with a variety of techniques. The excited-state dynamics of the dyes in close proximity to the nanoparticle surface were studied using the time-correlated single-photon counting technique and near-IR fs transient absorption spectroscopy. The excited states of the dyes in the hybrid metal/organic systems exhibit an ultrafast (<5 ps) deactivation as evidenced by the fs transient absorption measurements. The length of the alkyl spacer between the dye and the thiol group has a profound effect on the ultrafast dynamics of the photoexcited systems. An ultrafast formation (ca. 0.5 ps) of a cation-like species has been recorded for the system incorporating the propyl spacer but not for the dodecyl-linker system. The formation of the cation-like species has been shown to be less efficient in a mixed-ligand system in which the bis(diarylamino)biphenyl-based thiol was diluted on the surface with dodecanethiol. Additionally, the ultrafast formation (ca. 1 ps) of a cation-like species with a similar spectroscopic signature has been observed in the solid state of the dye. A combination of the ultrafast dynamics and (1)H NMR spectroscopic data has been used to discuss the observed behavior in terms of dye-dye interactions in the nanoparticle systems. Due to the surface curvature of the nanoparticle, the propyl spacer imposes a closer dye-dye distance than the dodecyl spacer, thus facilitating dye-dye interactions that lead to the formation of a charge-transfer species involving two or more dye molecules.
RESUMO
All-optical switching applications require materials with large third-order nonlinearities and low nonlinear optical losses. We present a design approach that involves enhancing the real part of the third-order polarizability (gamma) of cyanine-like molecules through incorporation of polarizable chalcogen atoms into terminal groups, while controlling the molecular length to obtain favorable one- and two-photon absorption resonances that lead to suitably low optical loss and appreciable dispersion enhancement of the real part of gamma. We implemented this strategy in a soluble bis(selenopyrylium) heptamethine dye that exhibits a real part of gamma that is exceptionally large throughout the wavelength range used for telecommunications, and an imaginary part of gamma, a measure of nonlinear loss, that is smaller by two orders of magnitude. This combination is critical in enabling low-power, high-contrast optical switching.
RESUMO
Copper(I)-responsive fluorescent probes based on photoinduced electron transfer (PET) switching consistently display incomplete recovery of emission upon Cu(I) binding compared to the corresponding isolated fluorophores, raising the question of whether Cu(I) might engage in adverse quenching pathways. To address this question, we performed detailed photophysical studies on a series of Cu(I)-responsive fluorescent probes that are based on a 16-membered thiazacrown receptor ([16]aneNS(3)) tethered to 1,3,5-triarylpyrazoline-fluorophores. The fluorescence enhancement upon Cu(I) binding, which is mainly governed by changes in the photoinduced electron transfer (PET) driving force between the ligand and fluorophore, was systematically optimized by increasing the electron withdrawing character of the 1-aryl-ring, yielding a maximum 29-fold fluorescence enhancement upon saturation with Cu(I) in methanol and a greater than 500-fold enhancement upon protonation with trifluoroacetic acid. Time-resolved fluorescence decay data for the Cu(I)-saturated probe indicated the presence of three distinct emissive species in methanol. Contrary to the notion that Cu(I) might engage in reductive electron transfer quenching, femtosecond time-resolved pump-probe experiments provided no evidence for formation of a transient Cu(II) species upon photoexcitation. Variable temperature (1)H NMR experiments revealed a dynamic equilibrium between the tetradentate NS(3)-coordinated Cu(I) complex and a ternary complex involving coordination of a solvent molecule, an observation that was further supported by quantum chemical calculations. The combined photophysical, electrochemical, and solution chemistry experiments demonstrate that electron transfer from Cu(I) does not compete with radiative deactivation of the excited fluorophore, and, hence, that the Cu(I)-induced fluorescence switching is kinetically controlled.
Assuntos
Cobre/química , Elétrons , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Cinética , Estrutura Molecular , Compostos Organometálicos/química , Oxirredução , Fotoquímica , Teoria Quântica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , EstereoisomerismoRESUMO
Six anionic pentamethine dyes with different 2,2-difluoro-4-aryl-1,3,2(2 H)-dioxaborin-6-yl termini were synthesized and isolated as tetra-n-octylammonium salts with a variety of aryl groups appended to increase conjugation beyond the dioxaborine termini. The increased conjugation was expected to decrease the energy of the lowest-lying excited state, and increase the transition dipole moment linking this state to the ground state, which would be anticipated to result in an increase in the real part of the third-order polarizability, Re(gamma). UV/Vis-NIR absorption spectroscopy indicates that the absorption maxima in DMSO vary from 691 to 761 nm, with the longest wavelength transitions observed for a derivative where the aryl group is 4-nitrophenyl. Closed-aperture Z-scan measurements at 1.3 microm in DMSO indicate that Re(gamma) varies from -2.9x10(-33) to -5.4x10(-33) esu in these systems. The largest magnitude of Re(gamma) was observed for a dye with E-4-styrylphenyl aryl groups. This result can be rationalized using a two-state expression which relates Re(gamma) to the energy and transition dipole moment of the transition from the ground state to the lowest-lying excited state. A nonamethine analogue of this compound was also synthesized and exhibits a slightly larger Re(gamma) with respect to a previously reported bis(dioxaborine)-terminated nonamethine. The extension of conjugation beyond the dioxaborine termini seems to result in an overall increase in Re(gamma). However, the effects are smaller than those found by increasing conjugation in the polymethine bridge due to reduced participation of terminal groups in the HOMO.
RESUMO
Optical-quality, melt processable thick films of a conjugated polymer blend containing poly(2-methoxy-5-(2-ethyl-hexyloxy)-(phenylene vinylene)) (MEH-PPV), a C(60) derivative (PCBM) and a plasticizer (1,2-di-iso-octylphthalate) have been developed and their nonlinear absorption and optical limiting properties have been investigated. These blend materials exhibited strong optical limiting characteristics in the near infrared region (750-900 nm), with broad temporal dynamic range spanning femtosecond to nanosecond pulse widths. The dispersion of the optical limiting figure-of-merit of the MEH-PPV:PCBM:DOP blend shows a peak near the wavelength of the MEH-PPV cation, indicating an important role of one-photon and two-photon induced charge transfer in the nonlinear absorption response.
Assuntos
Fulerenos/química , Óptica e Fotônica , Polímeros/química , Absorção , Cátions , Raios Infravermelhos , Teste de Materiais , Modelos Químicos , Fótons , Ácidos Ftálicos/química , Plastificantes , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Compostos de Vinila/químicaRESUMO
Cyanines, which represent a class of charged chromophores with an odd number of pi-conjugated carbons, display unique electronic and optical properties attributed to the strong electronic delocalization and the absence of any significant carbon-carbon bond-length alternation (BLA) along their backbones. The flatness of the corresponding electronic potential makes cyanine dyes the compounds to which simple free-electron theory can be applied in the most relevant way. Recently, cations of porphyrin dimers linked by a pi-conjugated bridge with an odd number of carbons and presenting alternating single and triple bonds were shown to possess linear and nonlinear optical properties analogous to those of cyanines. Here, by using a joint theoretical and experimental approach, we demonstrate the correspondence between cyanines and the new class of alkyne carbocations, in spite of their marked difference in BLA.
RESUMO
Various single-standed DNA-encapsulated Ag nanoclusters (nanodots) exhibit strong, discrete fluorescence with solvent polarity-dependent absorption and emission throughout the visible and near-IR. All species examined, regardless of their excitation and emission energies, show similar µs single-molecule blinking dynamics and near IR transient absorptions. The polarity dependence, µsec blinking, and indistinguishable µsec-decaying transient absorption spectra for multiple nanodots suggest a common charge transfer-based mechanism that gives rise to nanodot fluorescence intermittency. Photoinduced charge transfer that is common to all nanodot emitters is proposed to occur from the Ag cluster into the nearby DNA bases to yield a long-lived charge-separated trap state that results in blinking on the single molecule level.
RESUMO
A lead bis(ethynyl)porphyrin polymer possesses strong nonlinear absorption with unprecedented spectral/temporal coverage as a result of broad, overlapping two-photon and excited-state absorption bands with favorable excited-state dynamics. Consequently, this material exhibits effective optical limiting over a range of about 500 nm in the near infrared (ca. 1050 - 1600 nm) and for laser pulsewidths spanning from 75 fs to 40 ns. Introduction of the material in a waveguide device geometry results in a strong optical limiting response.
Assuntos
Raios Infravermelhos , Metaloporfirinas/química , Dinâmica não Linear , Polímeros/química , Absorção , Simulação por Computador , Cinética , SoluçõesRESUMO
Nanoscale features as small as 65 +/- 5 nm have been formed reproducibly by using 520 nm femtosecond pulsed excitation of a 4,4'-bis(di-n-butylamino)biphenyl chromophore to initiate crosslinking in a triacrylate blend. Dosimetry studies of the photoinduced polymerization were performed on chromophores with sizable two-photon absorption cross-sections at 520 and 730 nm. These studies show that sub-diffraction limited line widths are obtained in both cases with the lines written at 520 nm being smaller. Three-dimensional multiphoton lithography at 520 nm has been used to fabricate polymeric woodpile photonic crystal structures that show stop bands in the near-infrared spectral region.