RESUMO
Estuarine ecosystems face increasing anthropogenic pressures, necessitating effective monitoring methods to mitigate their impacts on the biodiversity they harbour. The use of environmental DNA (eDNA) based detection methods is increasingly recognized as a promising tool to complement other, potentially invasive monitoring techniques. Integrating such eDNA analyses into monitoring frameworks for large ecosystems is still challenging and requires a deeper understanding of the scale and resolution at which eDNA patterns may offer insights in species presence and community composition space and time. The Scheldt estuary, characterized by its diverse habitats and complex currents, is one of the largest Western European tidal river systems. Until now, it remains challenging to obtain accurate information on fish communities living in and migrating through this ecosystem, consequently confining our knowledge to specific locations. To explore the potential of eDNA based monitoring, we simultaneously combine stow net fishing with eDNA metabarcoding, to assess spatiotemporal shifts in the Scheldt estuary's fish communities. In total, we detected 71 fish species in the estuary using eDNA metabarcoding, partly overlapping with historic fish community data gathered at the different study locations and in contrast to only 42 species using stow net fishing during the same survey period. Community compositions found by both detection methods varied among sampling locations, driven by a clear correlation to the salinity gradient. Limited effects of sampling depth and tide were observed on the eDNA metabarcoding data, allowing a significant reduction of the eDNA sampling effort for future eDNA fish monitoring campaigns in this study system. Our results further demonstrate that seasonal shifts in fish species occurrence can be detected using eDNA metabarcoding. Combining eDNA metabarcoding and stow net fishing further enhances our understanding of this vital waterway's diverse fish populations, allowing a higher resolution and more efficient monitoring strategy.
Assuntos
Código de Barras de DNA Taxonômico , DNA Ambiental , Monitoramento Ambiental , Estuários , Peixes , Animais , Peixes/genética , DNA Ambiental/análise , Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental/métodos , Biodiversidade , Ecossistema , RiosRESUMO
Monitoring fish communities is central to the evaluation of ecological health of rivers. Both presence/absence of fish species and their relative quantity in local fish assemblages are crucial parameters to measure. Fish communities in lotic systems are traditionally monitored via electrofishing, characterized by a known limited efficiency and high survey costs. Analysis of environmental DNA could serve as a non-destructive alternative for detection and quantification of lotic fish communities, but this approach still requires further insights in practical sampling schemes incorporating transport and dilution of the eDNA particles; optimization of predictive power and quality assurance of the molecular detection method. Via a controlled cage experiment, we aim to extend the knowledge on streamreach of eDNA in small rivers and large brooks, as laid out in the European Water Framework Directive's water typology. Using a high and low source biomass in two river transects of a species-poor river characterized by contrasting river discharge rates, we found strong and significant correlations between the eDNA relative species abundances and the relative biomass per species in the cage community. Despite a decreasing correlation over distance, the underlying community composition remained stable from 25 to 300 m, or up to 1 km downstream of the eDNA source, depending on the river discharge rate. Such decrease in similarity between relative source biomass and the corresponding eDNA-based community profile with increasing distance downstream from the source, might be attributed to variation in species-specific eDNA persistence. Our findings offer crucial insights on eDNA behaviour and characterization of riverine fish communities. We conclude that water sampled from a relatively small river offers an adequate eDNA snapshot of the total fish community in the 300-1000 m upstream transect. The potential application for other river systems is further discussed.
Assuntos
DNA Ambiental , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental/métodos , Peixes/genética , Água , EcossistemaRESUMO
The invasive American bullfrog (Lithobates catesbeianus) imperils freshwater biodiversity worldwide. Effective management hinges on early detection of incipient invasions and subsequent rapid response, as established populations are extremely difficult to eradicate. Although environmental DNA (eDNA) detection methods provide a highly sensitive alternative to conventional surveillance techniques, extensive testing is imperative to generate reliable output. Here, we tested and compared the performance of two primer/probe assays to detect and quantify the abundance of bullfrogs in Western Europe in silico and in situ using digital droplet PCR (ddPCR). Although both assays proved to be equally target-specific and sensitive, one outperformed the other in ddPCR detection resolution (i.e., distinguishing groups of target-positive and target-negative droplets), and hence was selected for further analyses. Mesocosm experiments revealed that tadpole abundance and biomass explained 99% of the variation in eDNA concentration. Because per individual eDNA emission rates did not differ significantly among tadpoles and juveniles, and adults mostly reside out of the water, eDNA concentration can be used as an approximation of local bullfrog abundance in natural populations. Seasonal eDNA patterns in three colonized ponds showed parallel fluctuations in bullfrog eDNA concentration. An increase in eDNA concentration was detected in spring, followed by a strong peak coinciding with the breeding season (August, September or October), and continuously low eDNA concentrations during winter. With this study, we report the validation process required for appropriately implementing eDNA barcoding analyses in lentic systems. We demonstrate that this technique can serve as a solid and reliable tool to detect the early stages of bullfrog invasions and to quantify temporal changes in abundance that will be useful in coordinating large-scale bullfrog eradication programs and evaluating their efficiency.
Assuntos
Monitoramento Ambiental/métodos , Rana catesbeiana/genética , Animais , Biodiversidade , DNA Ambiental/genética , Europa (Continente) , Água Doce , Espécies Introduzidas/tendências , Reação em Cadeia da Polimerase/métodos , Lagoas , Estações do AnoRESUMO
The European weather loach (Misgurnus fossilis) is a cryptic and poorly known fish species of high conservation concern. The species is experiencing dramatic population collapses across its native range to the point of regional extinction. Although environmental DNA (eDNA)-based approaches offer clear advantages over conventional field methods for monitoring rare and endangered species, accurate detection and quantification remain difficult and quality assessment is often poorly incorporated. In this study, we developed and validated a novel digital droplet PCR (ddPCR) eDNA-based method for reliable detection and quantification, which allows accurate monitoring of M. fossilis across a number of habitat types. A dilution experiment under laboratory conditions allowed the definition of the limit of detection (LOD) and the limit of quantification (LOQ), which were set at concentrations of 0.07 and 0.14 copies µl-1 , respectively. A series of aquarium experiments revealed a significant and positive relationship between the number of individuals and the eDNA concentration measured. During a 3 year survey (2017-2019), we assessed 96 locations for the presence of M. fossilis in Flanders (Belgium). eDNA analyses on these samples highlighted 45% positive detections of the species. On the basis of the eDNA concentration per litre of water, only 12 sites appeared to harbour relatively dense populations. The other 31 sites gave a relatively weak positive signal that was typically situated below the LOQ. Combining sample-specific estimates of effective DNA quantity (Qe ) and conventional field sampling, we concluded that each of these weak positive sites still likely harboured the species and therefore they do not represent false positives. Further, only seven of the classified negative samples warrant additional sampling as our analyses identified a substantial risk of false-negative detections (i.e., type II errors) at these locations. Finally, we illustrated that ddPCR outcompetes conventional qPCR analyses, especially when target DNA concentrations are critically low, which could be attributed to a reduced sensitivity of ddPCR to inhibition effects, higher sample concentrations being accommodated and higher sensitivity obtained.
Assuntos
Cipriniformes/genética , DNA Ambiental/análise , Animais , Bélgica , DNA Ambiental/genética , Ecossistema , Espécies em Perigo de Extinção , Monitoramento Ambiental , Água Doce/química , Densidade Demográfica , Reação em Cadeia da Polimerase em Tempo RealRESUMO
To effectively monitor, manage and protect aquatic species and understand their interactions, knowledge of their spatiotemporal distribution is needed. In this study, we used a fine-scale spatiotemporal water sampling design, followed by environmental DNA (eDNA) 12S metabarcoding, to investigate occupancy patterns of a natural community of fish and amphibian species in a lentic system. In the same system, we experimentally estimated the spatial and temporal dispersion of eDNA by placing a community of different fish and amphibian species in cages at one side of the pond, creating a controlled point of eDNA emission. Analyses of this cage community revealed a sharp spatial decline in detection rates and relative eDNA quantities at a distance of 5-10 m from the source, depending on the species and its abundance. In addition, none of the caged species could be detected 1 week after removal from the system. This indicates high eDNA decay rates and limited spatial eDNA dispersal, facilitating high local resolution for monitoring spatial occupancy patterns of aquatic species. Remarkably, for seven of the nine cage species, the presence of a single individual could be detected by pooling water of subsamples taken across the whole water body, illustrating the high sensitivity of the eDNA sampling and detection method applied. Finally, our work demonstrated that a fine-scale sampling design in combination with eDNA metabarcoding can cover total biodiversity very precisely and allows the construction of consistent spatiotemporal patterns of relative abundance and local distribution of free-living fish and amphibian species in a lentic ecosystem.