Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 13(19): 4207-4214, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35512383

RESUMO

Hematite (α-Fe2O3) is a photoelectrode for the water splitting process because of its relatively narrow bandgap and abundance in the earth's crust. In this study, the photoexcited state of a hematite thin film was investigated with femtosecond oxygen K-edge X-ray absorption spectroscopy (XAS) at the PAL-XFEL in order to follow the dynamics of its photoexcited states. The 200 fs decay time of the hole state in the valence band was observed via its corresponding XAS feature.

2.
Nat Commun ; 13(1): 265, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017533

RESUMO

In order to bring the diverse functionalities of transition metal oxides into modern electronics, it is imperative to integrate oxide films with controllable properties onto the silicon platform. Here, we present asymmetric LaMnO3/BaTiO3/SrTiO3 superlattices fabricated on silicon with layer thickness control at the unit-cell level. By harnessing the coherent strain between the constituent layers, we overcome the biaxial thermal tension from silicon and stabilize c-axis oriented BaTiO3 layers with substantially enhanced tetragonality, as revealed by atomically resolved scanning transmission electron microscopy. Optical second harmonic generation measurements signify a predominant out-of-plane polarized state with strongly enhanced net polarization in the tricolor superlattices, as compared to the BaTiO3 single film and conventional BaTiO3/SrTiO3 superlattice grown on silicon. Meanwhile, this coherent strain in turn suppresses the magnetism of LaMnO3 as the thickness of BaTiO3 increases. Our study raises the prospect of designing artificial oxide superlattices on silicon with tailored functionalities.

3.
Adv Mater ; 32(50): e2004995, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33175414

RESUMO

Epitaxial growth of SrTiO3 (STO) on silicon greatly accelerates the monolithic integration of multifunctional oxides into the mainstream semiconductor electronics. However, oxide superlattices (SLs), the birthplace of many exciting discoveries, remain largely unexplored on silicon. In this work, LaNiO3 /LaFeO3 SLs are synthesized on STO-buffered silicon (Si/STO) and STO single-crystal substrates, and their electronic properties are compared using dc transport and X-ray absorption spectroscopy. Both sets of SLs show a similar thickness-driven metal-to-insulator transition, albeit with resistivity and transition temperature modified by the different amounts of strain. In particular, the large tensile strain promotes a pronounced Ni 3 d x 2 - y 2 orbital polarization for the SL grown on Si/STO, comparable to that reported for LaNiO3 SL epitaxially strained to DyScO3 substrate. Those results illustrate the ability to integrate oxide SLs on silicon with structure and property approaching their counterparts grown on STO single crystal, and also open up new prospects of strain engineering in functional oxides based on the Si platform.

4.
ACS Appl Mater Interfaces ; 12(38): 42925-42932, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842731

RESUMO

To benefit from the diverse functionalities of perovskite oxides in silicon-based complementary metal oxide semiconductor (CMOS) technology, integrating oxides into a silicon platform has become one of the major tasks for oxide research. Using the deposition of LaMnO3/SrTiO3 (STO) superlattices (SLs) as a case study, we demonstrate that (001) single oriented oxide SLs can be integrated on Si using various template techniques, including a single-layer buffer of STO prepared by molecular beam epitaxy (MBE) and pulsed laser deposition, a multilayer buffer of Y-stabilized zirconia/CeO2/LaNiO3/STO, and STO-coated two-dimensional nanosheets of Ca2Nb3O10 (CNO) and reduced graphene oxide. The textured SL grown on STO-coated CNO nanosheets shows the highest crystallinity, owing to the small lattice mismatch between CNO and STO as well as less clamping from a Si substrate. The epitaxial SL grown on STO buffer prepared by MBE suffers the largest thermal strain, giving rise to a strongly suppressed saturation magnetization but an enhanced coercive field, as compared to the reference SL grown on an STO single crystal. These optional template techniques used for integrating oxides on Si are of significance to fulfill practical applications of oxide films in different fields.

5.
Phys Chem Chem Phys ; 22(5): 2685-2692, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31641716

RESUMO

Hematite, α-Fe2O3, is an important semiconductor for photoelectrochemical water splitting. Its low charge carrier mobility and the presence of midgap states provide favourable conditions for electron-hole recombination, hence affecting the semiconductor's photoelectrochemical efficiency. The nature of the excited state and charge carrier transport in hematite is strongly debated. In order to further understand the fundamental properties of the hematite photoexcited state, we conducted femtosecond 2p (L3) X-ray absorption (XAS) and 2p3d resonant inelastic scattering (RIXS) measurements on hematite thin-films at the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). The observed spectral changes and kinetic processes are in agreement with previous 3p XAS reports. The potential additional information that could be acquired from 2p3d RIXS experiments is also discussed.

6.
ACS Appl Mater Interfaces ; 10(37): 31580-31585, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30136570

RESUMO

One promising route toward encoding information is to utilize the two stable electronic states of a spin crossover molecule. Although this property is clearly manifested in transport across single molecule junctions, evidence linking charge transport across a solid-state device to the molecular film's spin state has thus far remained indirect. To establish this link, we deploy materials-centric and device-centric operando experiments involving X-ray absorption spectroscopy. We find a correlation between the temperature dependencies of the junction resistance and the Fe spin state within the device's [Fe(H2B(pz)2)2(NH2-phen)] molecular film. We also factually observe that the Fe molecular site mediates charge transport. Our dual operando studies reveal that transport involves a subset of molecules within an electronically heterogeneous spin crossover film. Our work confers an insight that substantially improves the state-of-the-art regarding spin crossover-based devices, thanks to a methodology that can benefit device studies of other next-generation molecular compounds.

7.
Adv Mater ; 29(19)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28295696

RESUMO

Materials science and device studies have, when implemented jointly as "operando" studies, better revealed the causal link between the properties of the device's materials and its operation, with applications ranging from gas sensing to information and energy technologies. Here, as a further step that maximizes this causal link, the paper focuses on the electronic properties of those atoms that drive a device's operation by using it to read out the materials property. It is demonstrated how this method can reveal insight into the operation of a macroscale, industrial-grade microelectronic device on the atomic level. A magnetic tunnel junction's (MTJ's) current, which involves charge transport across different atomic species and interfaces, is measured while these atoms absorb soft X-rays with synchrotron-grade brilliance. X-ray absorption is found to affect magnetotransport when the photon energy and linear polarization are tuned to excite FeO bonds parallel to the MTJ's interfaces. This explicit link between the device's spintronic performance and these FeO bonds, although predicted, challenges conventional wisdom on their detrimental spintronic impact. The technique opens interdisciplinary possibilities to directly probe the role of different atomic species on device operation, and shall considerably simplify the materials science iterations within device research.

8.
Nat Mater ; 14(10): 981-4, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26191660

RESUMO

Molecular semiconductors may exhibit antiferromagnetic correlations well below room temperature. Although inorganic antiferromagnetic layers may exchange bias single-molecule magnets, the reciprocal effect of an antiferromagnetic molecular layer magnetically pinning an inorganic ferromagnetic layer through exchange bias has so far not been observed. We report on the magnetic interplay, extending beyond the interface, between a cobalt ferromagnetic layer and a paramagnetic organic manganese phthalocyanine (MnPc) layer. These ferromagnetic/organic interfaces are called spinterfaces because spin polarization arises on them. The robust magnetism of the Co/MnPc spinterface stabilizes antiferromagnetic ordering at room temperature within subsequent MnPc monolayers away from the interface. The inferred magnetic coupling strength is much larger than that found in similar bulk, thin or ultrathin systems. In addition, at lower temperature, the antiferromagnetic MnPc layer induces an exchange bias on the Co film, which is magnetically pinned. These findings create new routes towards designing organic spintronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA