Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
JCO Oncol Pract ; : OP2300817, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38815190

RESUMO

PURPOSE: Patients with hereditary cancer syndromes face increased medical management recommendations to address their cancer risks. As multigene panels are the standard of testing today, more patients needing clinical intervention are being identified. This study calculates the downstream revenue (DSR) generated by patients ascertained by a genetic counselor (GC) with a hereditary cancer likely pathogenic/pathogenic variant (LPV/PV). METHODS: Retrospective chart review was performed for patients seen in a high-volume cancer genetics clinic between October 1, 2009, and December 31, 2021, with LPV/PVs in hereditary cancer predisposition genes. DSR and work relative value units (wRVUs) were calculated for each patient before and after they met with a GC. Subgroup analyses calculated DSR/wRVUs from patients affected and unaffected with cancer and those whose genetic counseling visit was the first at the institution (naїve). RESULTS: A total of 978 patients were available for analysis after exclusions were applied. Patients generated $73.06 million (M) in US dollars (USD) in DSR and 54,814 wRVUs after their initial genetic counseling visit. Unaffected patients (n = 370, 37.8%) generated $11.38M (USD) and 13,879 wRVUs; affected patients (n = 608, 62.2%) generated $61.68M (USD) and 40,935 wRVUs. Naïve patients (n = 367, 37.5%) generated $15.39M (USD) and 11,811 wRVUs; established patients (n = 611, 62.5%) generated $57.67M (USD) and 43,003 wRVUs. Unaffected, naïve patients (n = 204, 20.9%) generated $5.48M (USD) and 5,186 wRVUs. CONCLUSION: By identifying patients with hereditary cancer, GCs can bring in substantial DSR for their institution. Naïve and unaffected patients provide the greatest GC value-add as these patients represent new business and revenue sources to the institution. As multigene panels continue to expand, the number of patients needing downstream services will increase. Recognizing patients at increased cancer risk will improve patient outcomes while simultaneously providing DSR for institutions.

2.
Br J Nutr ; : 1-9, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654680

RESUMO

Prebiotic fibre represents a promising and efficacious treatment to manage pre-diabetes, acting via complementary pathways involving the gut microbiome and viscosity-related properties. In this study, we evaluated the effect of using a diverse prebiotic fibre supplement on glycaemic, lipid and inflammatory biomarkers in patients with pre-diabetes. Sixty-six patients diagnosed with pre-diabetes (yet not receiving glucose-lowering medications) were randomised into treatment (thirty-three) and placebo (thirty-three) interventions. Participants in the treatment arm consumed 20 g/d of a diverse prebiotic fibre supplement, and participants in the placebo arm consumed 2 g/d of cellulose for 24 weeks. A total of fifty-one and forty-eight participants completed the week 16 and week 24 visits, respectively. The intervention was well tolerated, with a high average adherence rate across groups. Our results extend upon previous work, showing a significant change in glycated haemoglobin (HbA1c) in the treatment group but only in participants with lower baseline HbA1c levels (< 6 % HbA1c) (P = 0·05; treatment -0·17 ± 0·27 v. placebo 0·07 ± 0·29, mean ± sd). Within the whole cohort, we showed significant improvements in insulin sensitivity (P = 0·03; treatment 1·62 ± 5·79 v. placebo -0·77 ± 2·11) and C-reactive protein (P FWE = 0·03; treatment -2·02 ± 6·42 v. placebo 0·94 ± 2·28) in the treatment group compared with the placebo. Together, our results support the use of a diverse prebiotic fibre supplement for physiologically relevant biomarkers in pre-diabetes.

3.
Cancer Discov ; 14(5): 846-865, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456804

RESUMO

Oncology drug combinations can improve therapeutic responses and increase treatment options for patients. The number of possible combinations is vast and responses can be context-specific. Systematic screens can identify clinically relevant, actionable combinations in defined patient subtypes. We present data for 109 anticancer drug combinations from AstraZeneca's oncology small molecule portfolio screened in 755 pan-cancer cell lines. Combinations were screened in a 7 × 7 concentration matrix, with more than 4 million measurements of sensitivity, producing an exceptionally data-rich resource. We implement a new approach using combination Emax (viability effect) and highest single agent (HSA) to assess combination benefit. We designed a clinical translatability workflow to identify combinations with clearly defined patient populations, rationale for tolerability based on tumor type and combination-specific "emergent" biomarkers, and exposures relevant to clinical doses. We describe three actionable combinations in defined cancer types, confirmed in vitro and in vivo, with a focus on hematologic cancers and apoptotic targets. SIGNIFICANCE: We present the largest cancer drug combination screen published to date with 7 × 7 concentration response matrices for 109 combinations in more than 750 cell lines, complemented by multi-omics predictors of response and identification of "emergent" combination biomarkers. We prioritize hits to optimize clinical translatability, and experimentally validate novel combination hypotheses. This article is featured in Selected Articles from This Issue, p. 695.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias , Humanos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
4.
Front Psychiatry ; 14: 1250268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025434

RESUMO

Gut inflammation is thought to modify brain activity and behaviour via modulation of the gut-brain axis. However, how relapsing and remitting exposure to peripheral inflammation over the natural history of inflammatory bowel disease (IBD) contributes to altered brain dynamics is poorly understood. Here, we used electroencephalography (EEG) to characterise changes in spontaneous spatiotemporal brain states in Crohn's Disease (CD) (n = 40) and Ulcerative Colitis (UC) (n = 30), compared to healthy individuals (n = 28). We first provide evidence of a significantly perturbed and heterogeneous microbial profile in CD, consistent with previous work showing enduring and long-standing dysbiosis in clinical remission. Results from our brain state assessment show that CD and UC exhibit alterations in the temporal properties of states implicating default-mode network, parietal, and visual regions, reflecting a shift in the predominance from externally to internally-oriented attentional modes. We investigated these dynamics at a finer sub-network resolution, showing a CD-specific and highly selective enhancement of connectivity between the insula and medial prefrontal cortex (mPFC), regions implicated in cognitive-interoceptive appraisal mechanisms. Alongside overall higher anxiety scores in CD, we also provide preliminary support to suggest that the strength of chronic interoceptive hyper-signalling in the brain co-occurs with disease duration. Together, our results demonstrate that a long-standing diagnosis of CD is, in itself, a key factor in determining the risk of developing altered brain network signatures.

5.
Hum Brain Mapp ; 44(18): 6418-6428, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37853935

RESUMO

Current behavioural treatment of obsessive-compulsive disorder (OCD) is informed by fear conditioning and involves iteratively re-evaluating previously threatening stimuli as safe. However, there is limited research investigating the neurobiological response to conditioning and reversal of threatening stimuli in individuals with OCD. A clinical sample of individuals with OCD (N = 45) and matched healthy controls (N = 45) underwent functional magnetic resonance imaging. While in the scanner, participants completed a well-validated fear reversal task and a resting-state scan. We found no evidence for group differences in task-evoked brain activation or functional connectivity in OCD. Multivariate analyses encompassing all participants in the clinical and control groups suggested that subjective appraisal of threatening and safe stimuli were associated with a larger difference in brain activity than the contribution of OCD symptoms. In particular, we observed a brain-behaviour continuum whereby heightened affective appraisal was related to increased bilateral insula activation during the task (r = 0.39, pFWE = .001). These findings suggest that changes in conditioned threat-related processes may not be a core neurobiological feature of OCD and encourage further research on the role of subjective experience in fear conditioning.


Assuntos
Transtorno Obsessivo-Compulsivo , Humanos , Medo/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Insular , Mapeamento Encefálico
6.
Sci Rep ; 13(1): 12137, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37495732

RESUMO

Activation of cardiac fibroblasts and differentiation to myofibroblasts underlies development of pathological cardiac fibrosis, leading to arrhythmias and heart failure. Myofibroblasts are characterised by increased α-smooth muscle actin (α-SMA) fibre expression, secretion of collagens and changes in proliferation. Transforming growth factor-beta (TGF-ß) and increased mechanical stress can initiate myofibroblast activation. Reversibility of the myofibroblast phenotype has been observed in murine cells but has not been explored in human cardiac fibroblasts. In this study, chronically activated adult primary human ventricular cardiac fibroblasts and human induced pluripotent stem cell derived cFbs (hiPSC-cFbs) were used to investigate the potential for reversal of the myofibroblast phenotype using either subculture on soft substrates or TGF-ß receptor inhibition. Culture on softer plates (25 or 2 kPa Young's modulus) did not alter proliferation or reduce expression of α-SMA and collagen 1. Similarly, culture of myofibroblasts in the presence of TGF-ß inhibitor did not reverse myofibroblasts back to a quiescent phenotype. Chronically activated hiPSC-cFbs also showed attenuated response to TGF-ß receptor inhibition and inability to reverse to quiescent fibroblast phenotype. Our data demonstrate substantial loss of TGF-ß signalling plasticity as well as a loss of feedback from the surrounding mechanical environment in chronically activated human myofibroblasts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miofibroblastos , Adulto , Humanos , Camundongos , Animais , Miofibroblastos/metabolismo , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , Fibroblastos/metabolismo , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Diferenciação Celular , Actinas/metabolismo , Fator de Crescimento Transformador beta1/genética
7.
Brain ; 146(4): 1322-1327, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36380526

RESUMO

The diagnosis of obsessive-compulsive disorder (OCD) has been linked with changes in frontostriatal resting-state connectivity. However, replication of prior findings is lacking, and the mechanistic understanding of these effects is incomplete. To confirm and advance knowledge on changes in frontostriatal functional connectivity in OCD, participants with OCD and matched healthy controls underwent resting-state functional, structural and diffusion neuroimaging. Functional connectivity changes in frontostriatal systems were here replicated in individuals with OCD (n = 52) compared with controls (n = 45). OCD participants showed greater functional connectivity (t = 4.3, PFWE = 0.01) between the nucleus accumbens (NAcc) and the orbitofrontal cortex (OFC) but lower functional connectivity between the dorsal putamen and lateral prefrontal cortex (t = 3.8, PFWE = 0.04) relative to controls. Computational modelling suggests that NAcc-OFC connectivity changes reflect an increased influence of NAcc over OFC activity and reduced OFC influence over NAcc activity (posterior probability, Pp > 0.66). Conversely, dorsal putamen showed reduced modulation over lateral prefrontal cortex activity (Pp > 0.90). These functional deregulations emerged on top of a generally intact anatomical substrate. We provide out-of-sample replication of opposite changes in ventro-anterior and dorso-posterior frontostriatal connectivity in OCD and advance the understanding of the neural underpinnings of these functional perturbations. These findings inform the development of targeted therapies normalizing frontostriatal dynamics in OCD.


Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Núcleo Accumbens , Putamen/diagnóstico por imagem , Mapeamento Encefálico
8.
Cancer Cell ; 40(8): 835-849.e8, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35839778

RESUMO

The proteome provides unique insights into disease biology beyond the genome and transcriptome. A lack of large proteomic datasets has restricted the identification of new cancer biomarkers. Here, proteomes of 949 cancer cell lines across 28 tissue types are analyzed by mass spectrometry. Deploying a workflow to quantify 8,498 proteins, these data capture evidence of cell-type and post-transcriptional modifications. Integrating multi-omics, drug response, and CRISPR-Cas9 gene essentiality screens with a deep learning-based pipeline reveals thousands of protein biomarkers of cancer vulnerabilities that are not significant at the transcript level. The power of the proteome to predict drug response is very similar to that of the transcriptome. Further, random downsampling to only 1,500 proteins has limited impact on predictive power, consistent with protein networks being highly connected and co-regulated. This pan-cancer proteomic map (ProCan-DepMapSanger) is a comprehensive resource available at https://cellmodelpassports.sanger.ac.uk.


Assuntos
Neoplasias , Proteômica , Biomarcadores Tumorais/genética , Linhagem Celular , Humanos , Neoplasias/genética , Proteoma/metabolismo , Proteômica/métodos
9.
Sci Rep ; 12(1): 5571, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35368031

RESUMO

Organoid cell culture methodologies are enabling the generation of cell models from healthy and diseased tissue. Patient-derived cancer organoids that recapitulate the genetic and histopathological diversity of patient tumours are being systematically generated, providing an opportunity to investigate new cancer biology and therapeutic approaches. The use of organoid cultures for many applications, including genetic and chemical perturbation screens, is limited due to the technical demands and cost associated with their handling and propagation. Here we report and benchmark a suspension culture technique for cancer organoids which allows for the expansion of models to tens of millions of cells with increased efficiency in comparison to standard organoid culturing protocols. Using whole-genome DNA and RNA sequencing analyses, as well as medium-throughput drug sensitivity testing and genome-wide CRISPR-Cas9 screening, we demonstrate that cancer organoids grown as a suspension culture are genetically and phenotypically similar to their counterparts grown in standard conditions. This culture technique simplifies organoid cell culture and extends the range of organoid applications, including for routine use in large-scale perturbation screens.


Assuntos
Neoplasias , Organoides , Técnicas de Cultura de Células , DNA , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Organoides/patologia
10.
Nature ; 603(7899): 166-173, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197630

RESUMO

Combinations of anti-cancer drugs can overcome resistance and provide new treatments1,2. The number of possible drug combinations vastly exceeds what could be tested clinically. Efforts to systematically identify active combinations and the tissues and molecular contexts in which they are most effective could accelerate the development of combination treatments. Here we evaluate the potency and efficacy of 2,025 clinically relevant two-drug combinations, generating a dataset encompassing 125 molecularly characterized breast, colorectal and pancreatic cancer cell lines. We show that synergy between drugs is rare and highly context-dependent, and that combinations of targeted agents are most likely to be synergistic. We incorporate multi-omic molecular features to identify combination biomarkers and specify synergistic drug combinations and their active contexts, including in basal-like breast cancer, and microsatellite-stable or KRAS-mutant colon cancer. Our results show that irinotecan and CHEK1 inhibition have synergistic effects in microsatellite-stable or KRAS-TP53 double-mutant colon cancer cells, leading to apoptosis and suppression of tumour xenograft growth. This study identifies clinically relevant effective drug combinations in distinct molecular subpopulations and is a resource to guide rational efforts to develop combinatorial drug treatments.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Pancreáticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
11.
Hum Brain Mapp ; 43(2): 733-749, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34811847

RESUMO

There is growing recognition that the composition of the gut microbiota influences behaviour, including responses to threat. The cognitive-interoceptive appraisal of threat-related stimuli relies on dynamic neural computations between the anterior insular (AIC) and the dorsal anterior cingulate (dACC) cortices. If, to what extent, and how microbial consortia influence the activity of this cortical threat processing circuitry is unclear. We addressed this question by combining a threat processing task, neuroimaging, 16S rRNA profiling and computational modelling in healthy participants. Results showed interactions between high-level ecological indices with threat-related AIC-dACC neural dynamics. At finer taxonomic resolutions, the abundance of Ruminococcus was differentially linked to connectivity between, and activity within the AIC and dACC during threat updating. Functional inference analysis provides a strong rationale to motivate future investigations of microbiota-derived metabolites in the observed relationship with threat-related brain processes.


Assuntos
Conectoma , Medo/fisiologia , Microbioma Gastrointestinal/fisiologia , Giro do Cíngulo/fisiologia , Córtex Insular/fisiologia , Rede Nervosa/fisiologia , Adulto , Condicionamento Clássico/fisiologia , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Córtex Insular/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Modelos Teóricos , Rede Nervosa/diagnóstico por imagem , RNA Ribossômico 16S , Adulto Jovem
12.
J Am Heart Assoc ; 10(5): e019338, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586463

RESUMO

Cardiac fibroblasts are the primary cell type responsible for deposition of extracellular matrix in the heart, providing support to the contracting myocardium and contributing to a myriad of physiological signaling processes. Despite the importance of fibrosis in processes of wound healing, excessive fibroblast proliferation and activation can lead to pathological remodeling, driving heart failure and the onset of arrhythmias. Our understanding of the mechanisms driving the cardiac fibroblast activation and proliferation is expanding, and evidence for their direct and indirect effects on cardiac myocyte function is accumulating. In this review, we focus on the importance of the fibroblast-to-myofibroblast transition and the cross talk of cardiac fibroblasts with cardiac myocytes. We also consider the current use of models used to explore these questions.


Assuntos
Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Insuficiência Cardíaca/patologia , Humanos , Miócitos Cardíacos/patologia , Transdução de Sinais
13.
Mol Syst Biol ; 16(7): e9405, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32627965

RESUMO

Low success rates during drug development are due, in part, to the difficulty of defining drug mechanism-of-action and molecular markers of therapeutic activity. Here, we integrated 199,219 drug sensitivity measurements for 397 unique anti-cancer drugs with genome-wide CRISPR loss-of-function screens in 484 cell lines to systematically investigate cellular drug mechanism-of-action. We observed an enrichment for positive associations between the profile of drug sensitivity and knockout of a drug's nominal target, and by leveraging protein-protein networks, we identified pathways underpinning drug sensitivity. This revealed an unappreciated positive association between mitochondrial E3 ubiquitin-protein ligase MARCH5 dependency and sensitivity to MCL1 inhibitors in breast cancer cell lines. We also estimated drug on-target and off-target activity, informing on specificity, potency and toxicity. Linking drug and gene dependency together with genomic data sets uncovered contexts in which molecular networks when perturbed mediate cancer cell loss-of-fitness and thereby provide independent and orthogonal evidence of biomarkers for drug development. This study illustrates how integrating cell line drug sensitivity with CRISPR loss-of-function screens can elucidate mechanism-of-action to advance drug development.


Assuntos
Antineoplásicos/farmacologia , Sistemas CRISPR-Cas , Desenvolvimento de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Redes Reguladoras de Genes/efeitos dos fármacos , Aptidão Genética/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Antineoplásicos/toxicidade , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Redes Reguladoras de Genes/genética , Aptidão Genética/genética , Genômica , Humanos , Modelos Lineares , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Preparações Farmacêuticas/metabolismo , Software , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Nutr Diet ; 77(4): 444-448, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30912282

RESUMO

AIM: Those with acquired brain injury (ABI) experience impairments in executive function, attention and concentration that may contribute to or exacerbate poor nutritional intakes. This is frequently observed in long-stay rehabilitation settings. This investigation aimed to identify the specific impact of the dining room television as a factor that exacerbates poor intake and nutritional status among those with ABI. METHODS: Routine meal audits were completed (six television on, six television off) over four non-consecutive days. Each individual's protein and energy intake per meal and day were assessed, and the differences were examined through paired t-tests. Dining room decibels were measured, with means, peaks and minimums recorded. RESULTS: Complete data for 12 meals were collected for seven individuals. Clinically, but not statistically significant increases in 48-hour protein and energy intake occurred with television off compared with on, including those requiring texture modified diets. CONCLUSIONS: This pilot investigation highlights that television may have a detrimental impact on nutritional intakes among those with ABI. Given the negligible costs and risk, minimising disruptive influences by turning the television off may become a recommendation for ABI in long-care rehabilitation settings.


Assuntos
Lesões Encefálicas , Ingestão de Alimentos , Televisão , Ingestão de Energia , Humanos , Projetos Piloto
15.
iScience ; 22: 380-391, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812808

RESUMO

Microbial organisms of the human gut microbiome do not exist in isolation but form complex and diverse interactions to maintain health and reduce risk of disease development. The organization of the gut microbiome is assumed to be a singular assortative network, where interactions between operational taxonomic units (OTUs) can readily be clustered into segregated and distinct communities. Here, we leverage recent methodological advances in network modeling to assess whether communities in the human microbiome exhibit a single network structure or whether co-existing mesoscale network architectures are present. We found evidence for core-periphery structures in the microbiome, supported by strong, assortative community interactions. This complex architecture, coupled with previously reported functional roles of OTUs, provides a nuanced understanding of how the microbiome simultaneously promotes high microbial diversity and maintains functional redundancy.

16.
J Phys Act Health ; 16(11): 1060-1069, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469366

RESUMO

BACKGROUND: This systematic review assessed evidence on the accelerometer-measured sedentary and physical activity (PA) behavior of nonoffice workers in "blue-collar" industries. METHODS: The databases CINAHL, Embase, MEDLINE, PubMed, and Scopus were searched up to April 6, 2018. Eligibility criteria were accelerometer-measured sedentary, sitting, and/or PA behaviors in "blue-collar" workers (≥10 participants; agricultural, construction, cleaning, manufacturing, mining, postal, or transport industries). Data on participants' characteristics, study protocols, and measured behaviors during work and/or nonwork time were extracted. Methodologic quality was assessed using a 12-item checklist. RESULTS: Twenty studies (representing 11 data sets), all from developed world economies, met inclusion criteria. The mean quality score for selected studies was 9.5 (SD 0.8) out of a maximum of 12. Data were analyzed using a range of analytical techniques (eg, accelerometer counts or pattern recognition algorithms). "Blue-collar" workers were more sedentary and less active during nonwork compared with work time (eg, sitting 5.7 vs 3.2 h/d; moderate to vigorous PA 0.5 vs 0.7 h/d). Drivers were the most sedentary (work time 5.1 h/d; nonwork time 8.2 h/d). CONCLUSIONS: High levels of sedentary time and insufficient PA to offset risk are health issues for "blue-collar" workers. To better inform interventions, research groups need to adopt common measurement and reporting methodologies.


Assuntos
Acelerometria/métodos , Exercício Físico/fisiologia , Doenças Profissionais/etiologia , Comportamento Sedentário , Adulto , Feminino , Humanos , Masculino
17.
Nucleic Acids Res ; 47(D1): D923-D929, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30260411

RESUMO

In vitro cancer cell cultures are facile experimental models used widely for research and drug development. Many cancer cell lines are available and efforts are ongoing to derive new models representing the histopathological and molecular diversity of tumours. Cell models have been generated by multiple laboratories over decades and consequently their annotation is incomplete and inconsistent. Furthermore, the relationships between many patient-matched and derivative cell lines have been lost, and accessing information and datasets is time-consuming and difficult. Here, we describe the Cell Model Passports database; cellmodelpassports.sanger.ac.uk, which provides details of cell model relationships, patient and clinical information, as well as access to associated genetic and functional datasets. The Passports database currently contains curated details and standardized annotation for >1200 cell models, including cancer organoid cultures. The Passports will be updated with newly derived cell models and datasets as they are generated. Users can navigate the database via tissue, cancer-type, genetic feature and data availability to select a model most suitable for specific applications. A flexible REST-API provides programmatic data access and exploration. The Cell Model Passports are a valuable tool enabling access to high-dimensional genomic and phenotypic cancer cell model datasets empowering diverse research applications.


Assuntos
Linhagem Celular Tumoral , Bases de Dados Factuais , Antineoplásicos , Conjuntos de Dados como Assunto , Desenvolvimento de Medicamentos , Genômica , Humanos , Modelos Biológicos , Organoides
18.
J Phys Act Health ; 14(10): 793-796, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28513305

RESUMO

BACKGROUND: This pilot study investigated the links between psychobiological indicators of work productivity, prolonged desk sitting, and conditions whereby office workers were able to interrupt sitting using a sit-stand or treadmill desk. METHODS: Twenty participants visited our laboratory and completed their own desk work in counterbalanced sit-only, sit-stand (Varidesk Pro Plus 48™), and sit-walk conditions (Infiniti TR1200-DTS™). Steady-state visually evoked potentials calculated from electroencephalography recordings during a set task at the end of the workday assessed attentional resource. Salivary cortisol samples were taken during the morning and afternoon to measure stress response. Within-subject analyses were used to compare work productivity indicators relative to condition. RESULTS: No significant differences in mean steady-state visually evoked potential amplitude were observed, although attentional resource allocation was found to be the most effective following the sit-stand [1.01 (0.46) µV] compared with the sit-walk [0.9 (0.28) µV] and sit-only [0.91 (0.32) µV] conditions. The mean magnitude of decrease in cortisol was most apparent when workers used treadmill (1.5 nmol/L; P = .007) and sit-stand (1.6 nmol/L; P = .001) desks, and least evident in the sit-only condition (1.0 nmol/L; P = .146). CONCLUSIONS: The findings highlight the potential benefits of standing or active deskwork to the allocation of attentional resources and the regulation of stress.


Assuntos
Eficiência/fisiologia , Postura/fisiologia , Caminhada/psicologia , Desempenho Profissional/normas , Local de Trabalho/psicologia , Adulto , Feminino , Humanos , Masculino , Projetos Piloto
19.
Cell Metab ; 17(2): 261-70, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23395172

RESUMO

Adult humans have about 25 trillion red blood cells (RBCs), and each second we recycle about 5 million RBCs by erythrophagocytosis (EP) in macrophages of the reticuloendothelial system. Despite the central role for EP in mammalian iron metabolism, the molecules and pathways responsible for heme trafficking during EP remain unknown. Here, we show that the mammalian homolog of HRG1, a transmembrane heme permease in C. elegans, is essential for macrophage iron homeostasis and transports heme from the phagolysosome to the cytoplasm during EP. HRG1 is strongly expressed in macrophages of the reticuloendothelial system and specifically localizes to the phagolysosomal membranes during EP. Depletion of Hrg1 in mouse macrophages causes attenuation of heme transport from the phagolysosomal compartment. Importantly, missense polymorphisms in human HRG1 are defective in heme transport. Our results reveal HRG1 as the long-sought heme transporter for heme-iron recycling in macrophages and suggest that genetic variations in HRG1 could be modifiers of human iron metabolism.


Assuntos
Eritrócitos/citologia , Heme/metabolismo , Hemeproteínas/metabolismo , Macrófagos/metabolismo , Fagocitose , Fagossomos/metabolismo , Animais , Transporte Biológico , Eritrócitos/metabolismo , Genes Reporter , Células HEK293 , Hemólise , Humanos , Membranas Intracelulares/metabolismo , Ferro/metabolismo , Macrófagos/citologia , Camundongos , Sistema Fagocitário Mononuclear/citologia , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra
20.
Nature ; 453(7198): 1127-31, 2008 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-18418376

RESUMO

Haems are metalloporphyrins that serve as prosthetic groups for various biological processes including respiration, gas sensing, xenobiotic detoxification, cell differentiation, circadian clock control, metabolic reprogramming and microRNA processing. With a few exceptions, haem is synthesized by a multistep biosynthetic pathway comprising defined intermediates that are highly conserved throughout evolution. Despite our extensive knowledge of haem biosynthesis and degradation, the cellular pathways and molecules that mediate intracellular haem trafficking are unknown. The experimental setback in identifying haem trafficking pathways has been the inability to dissociate the highly regulated cellular synthesis and degradation of haem from intracellular trafficking events. Caenorhabditis elegans and related helminths are natural haem auxotrophs that acquire environmental haem for incorporation into haemoproteins, which have vertebrate orthologues. Here we show, by exploiting this auxotrophy to identify HRG-1 proteins in C. elegans, that these proteins are essential for haem homeostasis and normal development in worms and vertebrates. Depletion of hrg-1, or its paralogue hrg-4, in worms results in the disruption of organismal haem sensing and an abnormal response to haem analogues. HRG-1 and HRG-4 are previously unknown transmembrane proteins, which reside in distinct intracellular compartments. Transient knockdown of hrg-1 in zebrafish leads to hydrocephalus, yolk tube malformations and, most strikingly, profound defects in erythropoiesis-phenotypes that are fully rescued by worm HRG-1. Human and worm proteins localize together, and bind and transport haem, thus establishing an evolutionarily conserved function for HRG-1. These findings reveal conserved pathways for cellular haem trafficking in animals that define the model for eukaryotic haem transport. Thus, uncovering the mechanisms of haem transport in C. elegans may provide insights into human disorders of haem metabolism and reveal new drug targets for developing anthelminthics to combat worm infestations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Homeostase , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Eritropoese , Heme/farmacologia , Hemeproteínas/genética , Humanos , Metaloporfirinas/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA