RESUMO
Anopheles mosquitoes are the sole vector of human malaria, the most burdensome vector-borne disease worldwide. Strategies aimed at reducing mosquito populations and limiting their ability to transmit disease show the most promise for disease control. Therefore, gaining an improved understanding of mosquito biology, and specifically that of the immune response, can aid efforts to develop new approaches that limit malaria transmission. Here, we use a genome-wide CRISPR screening approach for the first time in mosquito cells to identify essential genes in Anopheles and identify genes for which knockout confers resistance to clodronate liposomes, which have been widely used in mammals and arthropods to ablate immune cells. In the essential gene screen, we identified a set of 1280 Anopheles genes that are highly enriched for genes involved in fundamental cell processes. For the clodronate liposome screen, we identified several candidate resistance factors and confirm their roles in the uptake and processing of clodronate liposomes through in vivo validation in Anopheles gambiae, providing new mechanistic detail of phagolysosome formation and clodronate liposome function. In summary, we demonstrate the application of a genome-wide CRISPR knockout platform in a major malaria vector and the identification of genes that are important for fitness and immune-related processes.
RESUMO
BACKGROUND: Helopeltis cinchonae (Hemiptera: Miridae) is a major pest of tea plantations in Asia. Conventional control of pests with pesticides is unsustainable. Therefore, safe and eco-friendly alternatives, such as pheromones, are required to manage the pest. RESULTS: In gas chromatography-electroantennographic detection (GC-EAD) analysis of whole-body extracts of virgin female H. cinchonae, two compounds elicited electroantennogram (EAG) responses from male antennae. These were identified as hexyl (R)-3-acetoxybutyrate and (R)-1-acetoxy-5-butyroxyhexane using gas chromatography-mass spectrometry (GC-MS) analysis compared to synthetic compounds. This is the first study to report 1-acetoxy-5-butyroxyhexane as an insect pheromone component. The synthetic compounds elicited dose-dependent EAG responses from the antennae of male H. cinchonae. In two field trapping experiments, the individual compounds were highly attractive to male H. cinchonae when dispensed from polyethylene vials. However, higher catches were obtained with blends of the two compounds in a 1:10 ratio. The blend of racemic compounds was as attractive as the blend of (R)-enantiomers. CONCLUSIONS: We reported that 1-acetoxy-5-butyroxyhexane and hexyl 3-acetoxybutyrate are components of the female-produced sex pheromone of H. cinchonae, but further work is required on the blend and loading of pheromone and on trap design to provide an optimized system for monitoring and control of this pest. The results may also facilitate the identification of the pheromones of other Helopeltis species, which are major pests in many crops. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Camellia sinensis , Hormônios Esteroides Gonadais , Hemípteros , Controle de Pragas , Hemípteros/química , Hemípteros/metabolismo , Hormônios Esteroides Gonadais/biossíntese , Hormônios Esteroides Gonadais/química , Feminino , Animais , Tiocarbamatos/química , Tiocarbamatos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , MasculinoRESUMO
Mosquito-borne viruses cause more than 400 million annual infections and place over half of the world's population at risk. Despite this importance, the mechanisms by which arboviruses infect the mosquito host and disseminate to tissues required for transmission are not well understood. Here, we provide evidence that mosquito immune cells, known as hemocytes, play an integral role in the dissemination of dengue virus (DENV) and Zika virus (ZIKV) in the mosquito Aedes aegypti. We establish that phagocytic hemocytes are a focal point for virus infection and demonstrate that these immune cell populations facilitate virus dissemination to the ovaries and salivary glands. Additional transfer experiments confirm that virus-infected hemocytes confer a virus infection to non-infected mosquitoes more efficiently than free virus in acellular hemolymph, revealing that hemocytes are an important tropism to enhance virus dissemination in the mosquito host. These data support a "trojan horse" model of virus dissemination where infected hemocytes transport virus through the hemolymph to deliver virus to mosquito tissues required for transmission and parallels vertebrate systems where immune cell populations promote virus dissemination to secondary sites of infection. In summary, this study significantly advances our understanding of virus infection dynamics in mosquitoes and highlights conserved roles of immune cells in virus dissemination across vertebrate and invertebrate systems.
RESUMO
The rapid evolution of SARS-CoV-2 is driven in part by a need to evade the antibody response in the face of high levels of immunity. Here, we isolate spike (S) binding monoclonal antibodies (mAbs) from vaccinees who suffered vaccine break-through infections with Omicron sub lineages BA.4 or BA.5. Twenty eight potent antibodies are isolated and characterised functionally, and in some cases structurally. Since the emergence of BA.4/5, SARS-CoV-2 has continued to accrue mutations in the S protein, to understand this we characterize neutralization of a large panel of variants and demonstrate a steady attrition of neutralization by the panel of BA.4/5 mAbs culminating in total loss of function with recent XBB.1.5.70 variants containing the so-called 'FLip' mutations at positions 455 and 456. Interestingly, activity of some mAbs is regained on the recently reported variant BA.2.86.
Assuntos
Anticorpos Monoclonais , Complicações Pós-Operatórias , Humanos , Mutação , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos AntiviraisRESUMO
BACKGROUND: Spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), is an economically important pest of soft and stone fruit crops. The aim of this study was to identify repellents, formulated in dispensers, which could protect crops from D. suzukii. Fourteen potential repellents were screened against summer- and winter-morph D. suzukii through electroantennography and behavioural bioassays. Repellents effective in the laboratory were tested in polytunnels to determine their efficacy in reducing catches in fruit-baited traps. Further trials of three potential repellents were conducted to determine the distances over which repellent dispensers could reduce D. suzukii emergence in a strawberry crop. RESULTS: All 14 chemicals screened were detected by the antennae of both D. suzukii morphs. Hexyl acetate and geosmin both elicited a significantly greater corrected EAG response in summer morphs than winter morphs. Summer-morph D. suzukii were repelled by butyl acetate, ethyl propionate, methyl N,N-dimethyl anthranilate, geosmin, methyl salicylate, DEET and benzaldehyde at one or more doses test in laboratory bioassays. Winter morphs were repelled by ethyl propionate, methyl anthranilate, methyl N,N-dimethyl anthranilate, DEET, benzaldehyde and butyl anthranilate at one or more of the doses tested in the laboratory. Ethyl propionate, methyl N,N-dimethylanthranilate and benzaldehyde repelled both morphs from fruit-baited traps in polytunnel trapping trials. Ethyl propionate and methyl N,N-dimethylanthranilate reduced emergence of D. suzukii in a strawberry crop over 3-5 m. CONCLUSIONS: Ethyl propionate and methyl N,N-dimethylanthranilate may protect strawberry crops against D. suzukii. Future work should test these repellents in combination with attractants in a 'push-pull' strategy. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Drosophila , Controle de Insetos , Repelentes de Insetos , ortoaminobenzoatos , Animais , Repelentes de Insetos/farmacologia , Drosophila/efeitos dos fármacos , Drosophila/fisiologia , ortoaminobenzoatos/farmacologia , Controle de Insetos/métodos , Propionatos/farmacologia , Feminino , Masculino , FragariaRESUMO
Knowledge of insect pest ecology and biology is important for maximizing crop protection and reducing crop losses. Currently, we lack an efficient control program for the cocoa mirid Sahlbergella singularis Haglund (Hemiptera: Miridae), the principal insect pest of cocoa in West and Central Africa. A 2-yr study was conducted in 11 plantations across Ayos and Konye, two of the largest cocoa growing areas of Cameroon. We evaluated the effects of mirid sex pheromone and climatic variations on mirid population dynamics and their associated cocoa damage. Sex pheromone traps caught 1.5-fold higher mirids in Ayos than in Konye, with more overall counts in 2015 than in 2016. Cocoa pod counts were also significantly higher in 2015 than in 2016 and were negatively correlated with temperature and relative humidity. In both localities, mirid populations and associated cocoa pod damage were suppressed in plantations where sex pheromone traps were used. Damage incidence was positively correlated with mirid counts, confirming that the cocoa pod is the preferential site for mirid feeding and reproduction. As such, damage incidence could be used as proxy for comparative mirid population level due to the mirid's cryptic habit. Of the recorded weather variables, only relative humidity was correlated (negatively) with damage severity. Our data on the relationships between damage caused by mirids and their population dynamics and sex pheromone trap catches suggest that an effective control strategy using mass trapping could be developed for mirid management in cocoa plantations.
Assuntos
Cacau , Hemípteros , Heterópteros , Atrativos Sexuais , Animais , Feromônios , Camarões , Controle de InsetosRESUMO
Background: Diabetic ketoacidosis (DKA) during pregnancy poses significant risks to both the mother and fetus, with an increased risk of fetal demise. Although more prevalent in women with Type I diabetes (T1D); those with Type 2 diabetes (T2D) and gestational diabetes mellitus (GDM) can also develop DKA. A lack of information about DKA during pregnancy exists worldwide, including in South Africa. Objective: This study examined the characteristics and outcomes associated with DKA during pregnancy. Methods: The study took place between 1 April 2020 and 1 October 2022. Pregnant women with DKA, admitted to Tygerberg Hospital's Obstetric Critical Care Unit (OCCU) were included. Maternal characteristics, precipitants of DKA, adverse events during treatment, and maternal-fetal outcomes were examined. Results: There were 54 episodes of DKA among 47 women. Most DKA's were mild and occurred in the third trimester. Pregestational diabetes dominated (31/47; 60%), with 47% having T1D and 94% requiring insulin. Seven women (7/47, 15%; T2D:6, T1D:1) had two episodes of DKA during the same pregnancy. Most women (32/47; 68%) were either overweight or obese. Yet, despite the T2D phenotype, biomarkers indicated that auto-immune diabetes was prevalent among women without any prior history of T1D (6/21; 29%). Twelve women (26%) developed gestational hypertension during pregnancy, and 17 (36%) pre-eclampsia. Precipitating causes of DKA included infection (14/54; 26%), insulin disruption (14/54; 26%) and betamethasone administration (10/54; 19%). More than half of the episodes of DKA involved hypokalemia (35/54, 65%) that was associated with fetal death (P=0.042) and hypoglycemia (28/54, 52%). Preterm birth (<37 weeks' gestation) occurred in 85% of women. No maternal deaths were recorded. A high fetal mortality rate (13/47; 28%) that included 11 spontaneous intrauterine deaths and two medical terminations, was observed. Conclusion: Women with DKA have a high risk of fetal mortality as well as undiagnosed auto-immune diabetes. There is a strong link between maternal hypokalemia and fetal loss, suggesting an opportunity to address management gaps in pregnant women with DKA.
RESUMO
The tarnished plant bug, Lygus lineolaris (Hemiptera: Miridae), has a wide host range of over 700 plant species, including 130 crops of economic importance. During early spring, managing the field edges with weeds and other wild hosts is important in preventing early-season infestations of L. lineolaris in cotton to prevent damage to the squares and other fruiting structures. Scouting fields for L. lineolaris is time- and labor-intensive, and end-user variability associated with field sampling can lead to inaccuracies. Insect traps that combine visual cues and pheromones are more accurate, sustainable, and economically feasible in contrast to traditional insect detection methods. In this study, we investigated the application of red or white sticky cards baited with the female-produced sex pheromone to monitor overwintering L. lineolaris populations in early spring. Field experiments demonstrated that the red sticky cards baited with a pheromone blend containing hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-4-oxo-2-hexenal in 4:10:7 ratio are highly effective in trapping L. lineolaris adults in early spring before the row crops are planted, and in monitoring their movement into a cotton crop. The monitoring of L. lineolaris should help growers to make judicious decisions on insecticide applications to control early pest infestations, thereby reducing economic damage to cotton.
RESUMO
BACKGROUND: South African women of childbearing age are disproportionally affected by obesity and at significant risk of Type 2 Diabetes Mellitus (T2DM). Unless pregnant, they do not readily undergo screening for T2DM. With a local focus on improved antenatal care, hyperglycemia is often first detected in pregnancy (HFDP). This may erroneously be attributed to Gestational Diabetes Mellitus (GDM) in all without considering T2DM. Glucose evaluation following pregnancy is essential for early detection and management of women with T2DM in whom persistent hyperglycemia is to be expected. Conventional testing with an oral glucose tolerance test (OGTT) is cumbersome, prompting investigation for alternate solutions. AIM: To compare the diagnostic performance of HbA1c to the current gold standard OGTT in women with HFDP 4-12 weeks post-delivery. METHODS: Glucose homeostasis was assessed with OGTT and HbA1c in 167 women with HFDP, 4-12 weeks after delivery. Glucose status was based on American Diabetes Association criteria. RESULTS: Glucose homeostasis was assessed at 10 weeks (IQR 7-12) after delivery. Of the 167 participants, 52 (31%) had hyperglycemia, which was comprised of 34 (20%) prediabetes and 18 (11%) T2DM. Twelve women in the prediabetes subgroup had diagnostic fasting plasma glucose (FPG) and 2-hour plasma glucose (2hPG), but in two-thirds of the patients (22/34) only one time point proved diagnostic. The FPGs and the 2hPGs of six women with HbA1c-based T2DM were both within the prediabetes diagnostic range. According to the HbA1c measurements, 85% of 52 participants with gold standard OGTT defined hyperglycemia (prediabetes and T2DM) as well as 15 of 18 women with postpartum persistent T2DM were correctly classified. According to FPG, 15 women with persistent hyperglycemia would have been missed (11 with prediabetes and four with T2DM; 29%). When compared to an OGTT, a single HbA1c of 6.5% (48mmol/mol) postpartum demonstrated a sensitivity of 83% and specificity of 97% for the identification of T2DM. CONCLUSION: HbA1c may improve access to postpartum testing in overburdened clinical settings where the required standards of OGTT cannot be guaranteed. HbA1c is a valuable test to detect women who will benefit most from early intervention but cannot unequivocally replace OGTT.
Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Hiperglicemia , Estado Pré-Diabético , Feminino , Humanos , Gravidez , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Glicemia , Hemoglobinas Glicadas , Hiperglicemia/diagnóstico , Diabetes Gestacional/diagnóstico , Período Pós-Parto , GlucoseRESUMO
In November 2021, Omicron BA.1, containing a raft of new spike mutations, emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 and then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional receptor-binding domain (RBD) amino acid substitutions compared with BA.2. We describe a panel of 25 potent monoclonal antibodies (mAbs) generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titer of vaccine or BA.1, BA.2, or BA.4/5 immune serum.
Assuntos
Formação de Anticorpos , COVID-19 , Humanos , SARS-CoV-2 , Substituição de Aminoácidos , Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos NeutralizantesRESUMO
BACKGROUND: The tarnished plant bug Lygus lineolaris (Palisot de Beauvois) is considered the most damaging pest of cotton (Gossypium hirsutum L.) in the mid-southern United States. Previous studies have reported the role of different ratios of volatile metathoracic gland components such as hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal in eliciting low-level attraction of L. lineolaris. In this study, we tested different visual cues (colored sticky cards) in combination with olfactory cues (pheromone blends) to optimize the attraction and capture of L. lineolaris in the field. RESULTS: Red-colored sticky cards were more attractive to L. lineolaris adults than white, blue or yellow cards. Red sticky cards combined with blends of three potential pheromone components attracted significantly more L. lineolaris adults than sticky cards without a blend added. Traps baited with a blend of hexyl butyrate, (E)-2-hexenyl butyrate and (E)-4-oxo-2-hexenal in 4:10:7 ratio, respectively, caught a significantly higher number of L. lineolaris than those baited with 10:4:2 or 7:10:4 blends or an unbaited control in the first week of the experiment. CONCLUSIONS: Combining visual cues (red color) with olfactory cues (pheromone blends) significantly increased the capture of L. lineolaris in the field. This device or a future iteration could contribute towards sustainable and environmentally appropriate early-season monitoring and management of L. lineolaris in the field. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Assuntos
Hemípteros , Heterópteros , Animais , Humanos , Feromônios/farmacologia , Sinais (Psicologia) , Plantas , Gossypium , Butiratos/farmacologia , Butiratos/químicaRESUMO
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused successive global waves of infection. These variants, with multiple mutations in the spike protein, are thought to facilitate escape from natural and vaccine-induced immunity and often increase in affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor-binding domain (RBD). Here, we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared with BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection, which may explain the rapid spread in India, where where there is a high background of Delta infection. ACE2 affinity appears to be prioritized over greater escape.
Assuntos
COVID-19 , Hepatite D , Humanos , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , AnticorposRESUMO
OBJECTIVE: To describe the pregnancy outcomes and complications observed in a series of cases of transabdominal cerclage (TAC), which is reserved for highly selected women with recurrent mid-trimester pregnancy loss, due to cervical insufficiency. METHODS: A retrospective audit covering 25 years (January 1, 1997 to December 31, 2021) was performed at the Obstetric Special Care division, Tygerberg Academic Hospital in Cape Town, South Africa. All 118 pregnancies from 94 procedures, operated and managed by the principal author were included for descriptive analysis. RESULTS: Eighty-four (91.3%) of the 92 first pregnancies after first insertion had successful outcomes. All second and third pregnancies (24/24; 100%) were successful. Eight pregnancies did not achieve viability, two women (2/8) did however achieve a successful pregnancy after a subsequent repeat TAC procedure. For the viable pregnancies (110/118), the median gestational age at delivery was 37 weeks (range 28-39 weeks). The median intraoperative blood loss during cerclage insertion was 100 ml (range 25-750 ml). CONCLUSION: In experienced hands, TAC during pregnancy is a safe and effective operation, when other less invasive procedures have failed.
Assuntos
Aborto Habitual , Cerclagem Cervical , Nascimento Prematuro , Incompetência do Colo do Útero , Gravidez , Feminino , Humanos , Lactente , Estudos Retrospectivos , Cerclagem Cervical/métodos , África do Sul , Resultado da Gravidez , Incompetência do Colo do Útero/cirurgia , Nascimento Prematuro/epidemiologiaRESUMO
The worldwide invasive insect pest, Drosophila suzukii Matsumura (spotted-wing Drosophila), lays eggs in soft and stone fruit before harvest. Hatched larvae cause fruit collapse and significant economic losses. Current control methods rely primarily on foliar insecticide applications, which are not sustainable long-term solutions due to regulatory restrictions and the risk of insecticide resistance developing. We showed before that D. suzukii were deterred from laying eggs on artificial media previously visited by its sister species-Drosophila melanogaster. In the current study, laboratory choice test experiments were conducted to identify which D. melanogaster life stage (eggs, larvae, or adult) deterred D. suzukii oviposition. We demonstrated that the presence of live D. melanogaster larvae on the egg-laying media consistently deterred D. suzukii oviposition. Drosophila melanogaster cuticular hydrocarbons (CHCs) were examined as candidate for the oviposition deterrent. CHCs of larval and adult D. melanogaster and D. suzukii were analyzed. In both species, the composition of the CHCs of larvae was similar to that of adults, although quantities present were much lower. Furthermore, the CHC profiles of the two species were markedly different. However, when assayed as deterrents in the laboratory choice test experiment, CHC extracts from D. melanogaster did not deter oviposition by D. suzukii.
RESUMO
INTRODUCTION: Placental pathology is an important contributor to the understanding of preterm birth and reveals major differences between spontaneous preterm birth (SPTB) and iatrogenic preterm birth (IPTB). The aim of this study was to investigate these relationships. METHODS: Research midwives collected placentas from 1101 women with singleton pregnancies who were enrolled in the Safe Passage Study. Trained pathology technologists prepared and processed placenta specimens for macroscopic and microscopic examination by designated pathologists. Statistical analyses were done with STATISTICA version 13. RESULTS: In SPTB we found more cases of accelerated villous maturation; however, the other features of maternal vascular malperfusion (MVM) were not present. The prevalence rate of funisitis was also increased. In IPTB, multiple features of MVM - accelerated villous maturation, distal villous hypoplasia, decidual arteriopathy, increased syncytial knots, increased perivillous fibrin, and prominent extravillous trophoblast were increased, as were features of fetal vascular malperfusion (FVM) - umbilical cord vessel thrombosis, avascular villi, and fetal vascular thrombosis. Increased syncytial knots were found in 26% of preterm stillbirths and in 29% of preterm infant demises as compared to 81% of IPTB infants alive at one year. DISCUSSION: SPTB and IPTB differ. The detected "abnormal" accelerated villous maturation pattern in SPTB and preterm demises, suggests an inability of the placenta to adapt and may be a trigger for SPTB. Funisitis was the only inflammatory response significant for SPTB. MVM and FVM are implicated in IPTB, but not an inflammatory process.
Assuntos
Corioamnionite , Nascimento Prematuro , Corioamnionite/patologia , Feminino , Humanos , Doença Iatrogênica/epidemiologia , Recém-Nascido , Recém-Nascido Prematuro , Placenta/patologia , Gravidez , Nascimento Prematuro/patologiaRESUMO
The leaffooted bugs Leptoglossus zonatus and L. occidentalis (Hemiptera: Coreidae) cause substantial damage in tree nut crops in North America and pine seed orchards in North America and Europe, respectively. Sexually mature males of both species produce a number of aldehydes, esters, and sesquiterpenes, which are hypothesized to constitute an aggregation pheromone attractive to both sexes. Among the volatiles produced by males of both species, we identified a unique sesquiterpene hydrocarbon, given the common name "leptotriene" (5), which elicited strong responses from antennae of both sexes in electroantennogram assays. Here, we report its structure and its synthesis from (-)-(E)-ß-caryophyllene (1).
Assuntos
Heterópteros , Pinus , Sesquiterpenos , Animais , Feminino , Masculino , SementesRESUMO
The canola flower midge, Contarinia brassicola Sinclair (Diptera: Cecidomyiidae), is a newly-described species that induces galls on canola, Brassica napus Linnaeus and Brassica rapa Linnaeus (Brassicaceae). Identification of the sex pheromone of C. brassicola is essential to developing monitoring tools to elucidate the geographic range and hosts of this new pest, and the extent to which it threatens the $30 billion Canadian canola industry. The aim of this study was to identify and synthesize the female-produced sex pheromone of C. brassicola and demonstrate its effectiveness in attracting males to traps in the field. Two peaks were identified through GC-EAG analysis of female-produced volatiles which elicited electrophysiological responses in male antennae. These peaks were initially characterized through GC-MS and synthesis as 2,7-diacetoxynonane (major component) and 2-acetoxynonane (minor component), and the racemic compounds elicited EAG responses in male antennae. All four stereoisomers of 2,7-diacetoxynonane were synthesized and the naturally-produced compound was shown to be primarily the (2R,7S)-isomer by analysis on an enantioselective GC column, with a small amount of (2R,7R)-2,7-diacetoxynonane also present. The configuration of the minor component could not be determined because of the small amount present, but this was assumed to be (2R)-2-acetoxynonane by comparison with the configuration of the other two components. In field trials, none of the four stereoisomers of 2,7-diacetoxynonane, presented individually or as a racemic mixture, was attractive to male C. brassicola. However, dispensers loaded with a 10 µg:1 µg blend of (2R,7S)- and (2R,7R)-2,7-diacetoxynonane caught large numbers of male C. brassicola and significantly more than other blends tested. The addition of 0.5 µg of (2R)-2-acetoxynonane to this blend further increased the number of males caught. In future work, we will seek to identify the optimum trapping protocol for the application of the pheromone in monitoring and surveillance.
Assuntos
Brassica napus , Atrativos Sexuais , Canadá , Flores , Feromônios , Atrativos Sexuais/farmacologiaRESUMO
The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.
Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Testes de Neutralização , SARS-CoV-2/genética , África do SulRESUMO
Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.