Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Virus Res ; 103(1-2): 55-60, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15163489

RESUMO

During the 2001-2002 influenza season, human influenza A (H1N2) reassortant viruses were detected globally. The hemagglutinin (HA) of these H1N2 viruses was similar to that of the A/New Caledonia/20/99 (H1N1) vaccine strain both antigenically and genetically, while their neuraminidase (NA) was antigenically and genetically related to that of recent human influenza H3N2 reference viruses such as A/Moscow/10/99. All six internal genes of the H1N2 reassortants originated from an H3N2 virus. After being detected only in eastern Asia during the past 10 years, Influenza B/Victoria/2/87 lineage viruses reappeared in many countries outside of Asia in 2001. Additionally, reassortant influenza B viruses possessing an HA similar to that of B/Shandong/7/97, a recent B/Victoria/2/87 lineage reference strain, and an NA closely related to that of B/Sichuan/379/99, a recent B/Yamagata/16/88 lineage reference strain, were isolated globally and became the predominant influenza B epidemic strain. The current influenza vaccine is expected to provide good protection against H1N2 viruses because it contains A/New Caledonia/20/99 (H1N1) and A/Panama/2007/99 (H3N2) like viruses whose H1 HA or N2 NA are antigenically similar to those of recent circulating H1N2 viruses. On the other hand, widespread circulation of influenza B Victoria lineage viruses required inclusion of a strain from this lineage in influenza vaccines for the 2002-2003 season.


Assuntos
Evolução Molecular , Vírus da Influenza A/genética , Vírus da Influenza B/genética , Vírus Reordenados/genética , Recombinação Genética , Saúde Global , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza B/classificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Neuraminidase/genética , Filogenia , Vigilância da População
2.
MMWR Surveill Summ ; 51(7): 1-10, 2002 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-12418623

RESUMO

PROBLEM/CONDITION: In the United States, influenza epidemics occur nearly every winter and are responsible for substantial morbidity and mortality, including an average of approximately 114,000 hospitalizations and 20,000 deaths/year. REPORTING PERIOD: This report summarizes both actively and passively collected U.S. influenza surveillance data from October 1997 through September 2000. DESCRIPTION OF SYSTEM: During each October-May in the period covered, CDC received weekly reports from 1) approximately 120 World Health Organization (WHO) and National Respiratory and Enteric Virus Surveillance System (NREVSS) collaborating laboratories in the United States regarding influenza virus isolations; 2) approximately 230, 375, and 430 sentinel physicians during 1997-98, 1998-99, and 1999-00, respectively, regarding their total number of patient visits and the number of visits for influenza-like illness (ILI); and 3) state and territorial epidemiologists regarding estimates of local influenza activity. WHO collaborating laboratories also submitted influenza isolates to CDC for antigenic analysis. Throughout the year, the vital statistics offices in 122 cities reported weekly on deaths related to pneumonia and influenza (P&I). RESULTS: During the 1997-98 influenza season, influenza A(H3N2) was the most frequently isolated influenza virus type/subtype. Influenza A(H1N1) and B viruses were reported infrequently. The proportion of respiratory specimens testing positive for influenza peaked at 28% in late January. The longest period of sustained excess mortality (when the percentage of deaths attributed to P&I exceeded the epidemic threshold) was 10 consecutive weeks. P&I mortality peaked at 9.8% in January. Visits for ILI to sentinel physicians exceeded baseline levels for 7 weeks and peaked at 5% in mid-January through early February. A total of 45 state epidemiologists reported regional or widespread activity at the peak of the season. During the 1998-99 season, influenza A(H3N2) viruses predominated; however, influenza B viruses were also identified throughout the United States. Influenza A(H1N1) viruses were identified rarely. The proportion of respiratory specimens testing positive for influenza peaked at 28% in early February. P&I mortality exceeded the epidemic threshold for 12 consecutive weeks and peaked at 9.7% in early March. Visits for ILI to sentinel physicians exceeded baseline levels for 7 weeks and peaked at 5% in early through mid-February. Forty-three state epidemiologists reported regional or widespread activity at the peak of the season. During the 1999-00 season, influenza A(H3N2) viruses predominated, but influenza A(H1N1) and B viruses also were identified. The proportion of respiratory specimens testing positive for influenza peaked at 31% in mid- to late December. The proportion of deaths attributed to P&I exceeded the epidemic threshold for 13 consecutive weeks and peaked at 11.2% in mid-January. Visits to sentinel physicians for ILI exceeded baseline levels 4 consecutive weeks and peaked at 6% in late December. Forty-four state epidemiologists reported regional or widespread activity at the peak of the season. INTERPRETATION: Influenza A(H1N1), A(H3N2), and B viruses circulated during 1997-2000, but influenza A(H3N2) was the most frequently reported virus type/subtype during all three seasons. Influenza A(H3N2) is the virus type/subtype most frequently associated with excess P&I mortality. Influenza activity during all three seasons occurred at moderate to severe levels, and excess P&I mortality was reported during > or = 10 weeks each year. PUBLIC HEALTH ACTIONS: CDC conducts active national surveillance during each October-May to detect the emergence and spread of influenza virus variants and to monitor influenza-related morbidity and mortality. Surveillance data are provided weekly throughout the influenza season to public health officials, WHO, and health-care providers and are used to guide vaccine strain selection, prevention and control activities, and patient care. Influenza vaccination is the most effective means for reducing the yearly effect of influenza. Typically, one or two of the influenza vaccine component viruses are updated each year so that vaccine strains will closely match circulating viruses. Surveillance data will continue to be used to select vaccine strains and to monitor the match between vaccine strains and the currently circulating viruses.


Assuntos
Influenza Humana/epidemiologia , Vigilância da População , Surtos de Doenças , Humanos , Vírus da Influenza A , Vírus da Influenza B , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Estações do Ano , Estados Unidos/epidemiologia , Vacinação
3.
J Infect Dis ; 186(10): 1490-3, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12404167

RESUMO

Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Vírus Reordenados/fisiologia , Antígenos Virais/análise , Hemaglutininas/análise , Hemaglutininas/classificação , Humanos , Vírus da Influenza A/química , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Humana/epidemiologia , Neuraminidase/genética , Vírus Reordenados/química , Vírus Reordenados/classificação , Vírus Reordenados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA