Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5403, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109585

RESUMO

While adult bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) and their extrinsic regulation is well studied, little is known about the composition, function, and extrinsic regulation of the first HSPCs to enter the BM during development. Here, we functionally interrogate murine BM HSPCs from E15.5 through P0. Our work reveals that fetal BM HSPCs are present by E15.5, but distinct from the HSPC pool seen in fetal liver, both phenotypically and functionally, until near birth. We also generate a transcriptional atlas of perinatal BM HSPCs and the BM niche in mice across ontogeny, revealing that fetal BM lacks HSPCs with robust intrinsic stem cell programs, as well as niche cells supportive of HSPCs. In contrast, stem cell programs are preserved in neonatal BM HSPCs, which reside in a niche expressing HSC supportive factors distinct from those seen in adults. Collectively, our results provide important insights into the factors shaping hematopoiesis during this understudied window of hematopoietic development.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Feminino , Feto , Hematopoese , Camundongos , Parto , Gravidez
2.
J Plant Physiol ; 171(6): 411-20, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24594393

RESUMO

In this project, we hypothesize that cotton (Gossypium hirsutum) leaf temperature and the responses of leaf photosynthesis to temperature will change as the leaves expand and that differences between young and mature leaves will be associated with the proportion of saturated fatty acids in thylakoid and other membrane lipids. To that end, we studied main stem leaves obtained from plants growing in a temperature controlled greenhouse and at different times in the field season. We found that young leaves (∼5d old) had higher mid day temperatures, lower stomatal conductance and higher thermal optima as measured by ΦPSII temperature curves than did more mature leaves (∼13d old). Young leaves also had significant differences in fatty acid saturation with the warmer, young leaves having a higher proportion of palmitic acid (16:0) and lower linoleic acid (18:3) in total lipid extracts and higher 16:0 and lower palmitoleic acid (16:1) in the chloroplast membrane phosphoglycerides, digalactosyldiacylglycerol (in the greenhouse) and phosphatidylglycerol when compared with cooler, more mature leaves. Later in the growing season, leaf temperature, stomatal conductance and ΦPSII temperature curves for young and more mature leaves were similar and the proportion of 16:0 fatty acids decreased and 16:1 increased in phosphatidylglycerol. We conclude that changes in temperature as cotton leaves expand leads to alterations in the fatty acid composition of thylakoid and other membranes and, consequently, influence photosynthesis/temperature responses.


Assuntos
Aclimatação/fisiologia , Ácidos Graxos/metabolismo , Gossypium/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Clorofila/metabolismo , Cloroplastos/metabolismo , Ritmo Circadiano , Ácidos Graxos/isolamento & purificação , Fluorescência , Gossypium/efeitos da radiação , Luz , Ácido Linoleico/isolamento & purificação , Ácido Linoleico/metabolismo , Ácido Palmítico/isolamento & purificação , Ácido Palmítico/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal , Chuva , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA