Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
MAbs ; 16(1): 2316872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381460

RESUMO

Therapeutic bioconjugates are emerging as an essential tool to combat human disease. Site-specific conjugation technologies are widely recognized as the optimal approach for producing homogeneous drug products. Non-natural amino acid (nnAA) incorporation allows the introduction of bioconjugation handles at genetically defined locations. Escherichia coli (E. coli) is a facile host for therapeutic nnAA protein synthesis because it can stably replicate plasmids encoding genes for product and nnAA incorporation. Here, we demonstrate that by engineering E. coli to incorporate high levels of nnAAs, it is feasible to produce nnAA-containing antibody fragments and full-length immunoglobulin Gs (IgGs) in the cytoplasm of E. coli. Using high-density fermentation, it was possible to produce both of these types of molecules with site-specifically incorporated nnAAs at titers > 1 g/L. We anticipate this strategy will help simplify the production and manufacture of promising antibody therapeutics.


Assuntos
Aminoácidos , Escherichia coli , Humanos , Aminoácidos/genética , Escherichia coli/genética , Fragmentos de Imunoglobulinas , Anticorpos/genética
2.
Bioengineering (Basel) ; 10(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978695

RESUMO

The XpressCF+® cell-free protein synthesis system is a robust platform for the production of non-natural amino acids containing antibodies, which enable the site-specific conjugation of homogeneous antibody drug conjugates (ADCs) via click chemistry. Here, we present a robust and scalable means of achieving a 50-100% increase in IgG titers by combining the high productivity of cell-based protein synthesis with the unique ability of XpressCF+® reactions to produce correctly folded and assembled IgGs containing multiple non-natural amino acids at defined positions. This hybrid technology involves the pre-expression of an IgG light-chain (LC) protein in a conventional recombinant E. coli expression system, engineered to have an oxidizing cytoplasm. The prefabricated LC subunit is then added as a reagent to the cell-free protein synthesis reaction. Prefabricated LC increases IgG titers primarily by reducing the protein synthesis burden per IgG since the cell free translation machinery is only responsible for synthesizing the HC protein. Titer increases were demonstrated in four IgG products in scales ranging from 100-µL microplate reactions to 0.25-L stirred tank bioreactors. Similar titer increases with prefabricated LC were also demonstrated for a bispecific antibody in the scFvFc-FabFc format, demonstrating the generality of this approach. Prefabricated LC also increases robustness in cell-free reactions since it eliminates the need to fine-tune the HC-to-LC plasmid ratio, a critical parameter influencing IgG assembly and quality when the two IgG subunits are co-expressed in a single reaction. ADCs produced using prefabricated LC were shown to be identical to IgGs produced in cell-free alone by comparing product quality, in vitro cell killing, and FcRn receptor binding assays. This approach represents a significant step towards improving IgG titers and the robustness of cell-free protein synthesis reactions by integrating in vivo and in vitro protein production platforms.

3.
Oncotarget ; 14: 1-13, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36634212

RESUMO

Overexpression of CD74, a type II transmembrane glycoprotein involved in MHC class II antigen presentation, has been reported in many B-cell non-Hodgkin lymphomas (NHLs) and in multiple myeloma (MM). STRO-001 is a site-specific, predominantly single-species antibody-drug conjugate (ADC) that targets CD74 and has demonstrated efficacy in xenograft models of MM and tolerability in non-human primates. Here we report results of preclinical studies designed to elucidate the potential role of STRO-001 in B-cell NHL. STRO-001 displayed nanomolar and sub-nanomolar cytotoxicity in 88% (15/17) of cancer cell lines tested. STRO-001 showed potent cytotoxicity on proliferating B cells while limited cytotoxicity was observed on naïve human B cells. A linear dose-response relationship was demonstrated in vivo for DLBCL models SU-DHL-6 and U2932. Tumor regression was induced at doses less than 5 mg/kg, while maximal activity with complete cures were observed starting at 10 mg/kg. In MCL Mino and Jeko-1 xenografts, STRO-001 starting at 3 mg/kg significantly prolonged survival or induced tumor regression, respectively, leading to tumor eradication in both models. In summary, high CD74 expression levels in tumors, nanomolar cellular potency, and significant anti-tumor in DLBCL and MCL xenograft models support the ongoing clinical study of STRO-001 in patients with B-cell NHL.


Assuntos
Antineoplásicos , Imunoconjugados , Linfoma não Hodgkin , Mieloma Múltiplo , Animais , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mieloma Múltiplo/patologia , Linfoma não Hodgkin/tratamento farmacológico , Linhagem Celular Tumoral
4.
Mol Cancer Ther ; 22(2): 155-167, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459691

RESUMO

STRO-002 is a novel homogeneous folate receptor alpha (FolRα) targeting antibody-drug conjugate (ADC) currently being investigated in the clinic as a treatment for ovarian and endometrial cancers. Here, we describe the discovery, optimization, and antitumor properties of STRO-002. STRO-002 was generated by conjugation of a novel cleavable 3-aminophenyl hemiasterlin linker-warhead (SC239) to the nonnatural amino acid para-azidomethyl-L-phenylalanine incorporated at specific positions within a high affinity anti-FolRα antibody using Sutro's XpressCF+, which resulted in a homogeneous ADC with a drug-antibody ratio (DAR) of 4. STRO-002 binds to FolRα with high affinity, internalizes rapidly into target positive cells, and releases the tubulin-targeting cytotoxin 3-aminophenyl hemiasterlin (SC209). SC209 has reduced potential for drug efflux via P-glycoprotein 1 drug pump compared with other tubulin-targeting payloads. While STRO-002 lacks nonspecific cytotoxicity toward FolRα-negative cell lines, bystander killing of target negative cells was observed when cocultured with target positive cells. STRO-002 is stable in circulation with no change in DAR for up to 21 days and has a half-life of 6.4 days in mice. A single dose of STRO-002 induced significant tumor growth inhibition in FolRα-expressing xenograft models and patient-derived xenograft models. In addition, combination treatment with carboplatin or Avastin further increased STRO-002 efficacy in xenograft models. The potent and specific preclinical efficacy of STRO-002 supports clinical development of STRO-002 for treating patients with FolRα-expressing cancers, including ovarian, endometrial, and non-small cell lung cancer. Phase I dose escalation for STRO-002 is in progress in ovarian cancer and endometrial cancer patients (NCT03748186 and NCT05200364).


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias do Endométrio , Imunoconjugados , Neoplasias Pulmonares , Feminino , Humanos , Animais , Camundongos , Imunoconjugados/química , Tubulina (Proteína)/metabolismo , Receptor 1 de Folato , Antineoplásicos/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Immunol ; 13: 899617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720389

RESUMO

COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity. Antibodies from eggs of hens (immunoglobulin Y; IgY) that were administered the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein were developed for use as nasal drops to capture the virus on the nasal mucosa. Although initially raised against the 2019 novel coronavirus index strain (2019-nCoV), these anti-SARS-CoV-2 RBD IgY surprisingly had indistinguishable enzyme-linked immunosorbent assay binding against variants of concern that have emerged, including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529). This is different from sera of immunized or convalescent patients. Culture neutralization titers against available Alpha, Beta, and Delta were also indistinguishable from the index SARS-CoV-2 strain. Efforts to develop these IgY for clinical use demonstrated that the intranasal anti-SARS-CoV-2 RBD IgY preparation showed no binding (cross-reactivity) to a variety of human tissues and had an excellent safety profile in rats following 28-day intranasal delivery of the formulated IgY. A double-blind, randomized, placebo-controlled phase 1 study evaluating single-ascending and multiple doses of anti-SARS-CoV-2 RBD IgY administered intranasally for 14 days in 48 healthy adults also demonstrated an excellent safety and tolerability profile, and no evidence of systemic absorption. As these antiviral IgY have broad selectivity against many variants of concern, are fast to produce, and are a low-cost product, their use as prophylaxis to reduce SARS-CoV-2 viral transmission warrants further evaluation. Clinical Trial Registration: https://www.clinicaltrials.gov/ct2/show/NCT04567810, identifier NCT04567810.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Galinhas , Feminino , Humanos , Imunoglobulinas , Ratos , Glicoproteína da Espícula de Coronavírus
6.
Curr Opin Biotechnol ; 76: 102719, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569340

RESUMO

Cell-free protein synthesis (CFPS) technologies have grown from lab-scale research tools to biopharmaceutical production at the Good Manufacturing Practice manufacturing scale. Multiple human clinical trials are in progress with CFPS-based products. In addition, applications of CFPS in research have continued to expand over the years and play an important role in biopharmaceutical product discovery and development. The unique, open nature of CFPS has enabled efficient non-natural amino acid (nnAA) incorporation into protein products, which expands the range of biotherapeutics that can be considered for novel treatments. The flexibility and speed of CFPS combined with novel nnAA capabilities are poised to open a new chapter in the continuing evolution of biotherapies.


Assuntos
Produtos Biológicos , Aminoácidos/química , Sistema Livre de Células/química , Humanos , Biossíntese de Proteínas , Proteínas/química
7.
Biotechnol Bioeng ; 119(1): 162-175, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655229

RESUMO

Recent advances in cell-free protein synthesis have enabled the folding and assembly of full-length antibodies at high titers with extracts from prokaryotic cells. Coupled with the facile engineering of the Escherichia coli translation machinery, E. coli based in vitro protein synthesis reactions have emerged as a leading source of IgG molecules with nonnatural amino acids incorporated at specific locations for producing homogeneous antibody-drug conjugates (ADCs). While this has been demonstrated with extract produced in batch fermentation mode, continuous extract fermentation would facilitate supplying material for large-scale manufacturing of protein therapeutics. To accomplish this, the IgG-folding chaperones DsbC and FkpA, and orthogonal tRNA for nonnatural amino acid production were integrated onto the chromosome with high strength constitutive promoters. This enabled co-expression of all three factors at a consistently high level in the extract strain for the duration of a 5-day continuous fermentation. Cell-free protein synthesis reactions with extract produced from cells grown continuously yielded titers of IgG containing nonnatural amino acids above those from extract produced in batch fermentations. In addition, the quality of the synthesized IgGs and the potency of ADC produced with continuously fermented extract were indistinguishable from those produced with the batch extract. These experiments demonstrate that continuous fermentation of E. coli to produce extract for cell-free protein synthesis is feasible and helps unlock the potential for cell-free protein synthesis as a platform for biopharmaceutical production.


Assuntos
Sistema Livre de Células/microbiologia , Escherichia coli , Imunoconjugados/metabolismo , Engenharia Metabólica/métodos , Reatores Biológicos/microbiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação
8.
Bioconjug Chem ; 31(4): 1177-1187, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32138509

RESUMO

Antibody-drug conjugates (ADCs) are a class of targeted therapeutics consisting of a monoclonal antibody coupled to a cytotoxic payload. Various bioconjugation methods for producing site-specific ADCs have been reported recently, in efforts to improve immunoreactivity and pharmacokinetics and minimize batch variance-potential issues associated with first-generation ADCs prepared via stochastic peptide coupling of lysines or reduced cysteines. Recently, cell-free protein synthesis of antibodies incorporating para-azidomethyl phenylalanine (pAMF) at specific locations within the protein sequence has emerged as a means to generate antibody-drug conjugates with strictly defined drug-antibody-ratio, leading to ADCs with markedly improved stability, activity, and specificity. The incorporation of pAMF enables the conjugation of payloads functionalized for strain-promoted azide-alkyne cycloaddition. Here, we introduce two dibenzylcyclooctyne-functionalized bifunctional chelators that enable the incorporation of radioisotopes for positron emission tomography with 89Zr (t1/2 = 78.4 h, ß+ = 395 keV (22%), γ = 897 keV) or single photon emission computed tomography with 111In (t1/2 = 67.3 h, γ = 171 keV (91%), 245 keV (94%)) under physiologically compatible conditions. We show that the corresponding radiolabeled conjugates with site-specifically functionalized antibodies targeting HER2 are amenable to targeted molecular imaging of HER2+ expressing tumor xenografts in mice and exhibit a favorable biodistribution profile in comparison with conventional, glycosylated antibody conjugates generated by stochastic bioconjugation.


Assuntos
Alcinos/química , Aminoácidos/química , Azidas/química , Imunoconjugados/química , Radioisótopos de Índio/química , Radioisótopos/química , Zircônio/química , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Reação de Cicloadição , Humanos , Imunoconjugados/uso terapêutico , Marcação por Isótopo , Camundongos
9.
Viruses ; 10(6)2018 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-29861435

RESUMO

Sudan virus (SUDV) and Ebola viruses (EBOV) are both members of the Ebolavirus genus and have been sources of epidemics and outbreaks for several decades. We present here the generation and characterization of cross-reactive antibodies to both SUDV and EBOV, which were produced in a cell-free system and protective against SUDV in mice. A non-human primate, cynomolgus macaque, was immunized with viral-replicon particles expressing the glycoprotein of SUDV-Boniface (8A). Two separate antibody fragment phage display libraries were constructed after four immunogen injections. Both libraries were screened first against the SUDV and a second library was cross-selected against EBOV-Kikwit. Sequencing of 288 selected clones from the two distinct libraries identified 58 clones with distinct VH and VL sequences. Many of these clones were cross-reactive to EBOV and SUDV and able to neutralize SUDV. Three of these recombinant antibodies (X10B1, X10F3, and X10H2) were produced in the scFv-Fc format utilizing a cell-free production system. Mice that were challenged with SUDV-Boniface receiving 100µg of the X10B1/X10H2 scFv-Fc combination 6 and 48-h post-exposure demonstrated partial protection individually and complete protection as a combination. The data herein suggests these antibodies may be promising candidates for further therapeutic development.


Assuntos
Anticorpos Antivirais/farmacologia , Ebolavirus , Doença pelo Vírus Ebola/terapia , Glicoproteínas de Membrana/imunologia , Profilaxia Pós-Exposição , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Neutralizantes/farmacologia , Técnicas de Visualização da Superfície Celular , Reações Cruzadas , Feminino , Macaca , Masculino , Camundongos , Camundongos Knockout , Anticorpos de Cadeia Única/farmacologia , Vacinação
10.
Oncotarget ; 9(102): 37700-37714, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30701025

RESUMO

STRO-001 is a site-specific, predominantly single-species, fully human, aglycosylated anti-CD74 antibody-drug conjugate incorporating a non-cleavable linker-maytansinoid warhead with a drug-antibody ratio of 2 which was produced by a novel cell-free antibody synthesis platform. We examined the potential pharmacodynamics and anti-tumor effects of STRO-001 in multiple myeloma (MM). CD74 expression was assessed in MM cell lines and primary bone marrow (BM) MM biopsies. CD74 mRNA was detectable in CD138+ enriched plasma cells from 100% (892/892) of patients with newly diagnosed MM. Immunohistochemistry confirmed CD74 expression in 35/36 BM biopsies from patients with newly diagnosed and relapsed/refractory MM. Cytotoxicity assays demonstrated nanomolar STRO-001 potency in 4/6 MM cell lines. In ARP-1 and MM.1S tumor-bearing mice, repeat STRO-001 dosing provided significant antitumor activity with eradication of malignant hCD138+ BM plasma cells and prolonged survival. In a luciferase-expressing MM.1S xenograft model, dose-dependent STRO-001 efficacy was confirmed using bioluminescent imaging and BM tumor burden quantification. Consistent with the intended pharmacodynamic effect, STRO-001 induced dose-responsive, reversible B-cell and monocyte depletion in cynomolgus monkeys, up to a maximum tolerated 10 mg/kg, with no evidence of off-target toxicity. Collectively, these data suggest that STRO-001 is a promising therapeutic agent for the treatment of MM.

11.
Sci Rep ; 7(1): 3026, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596531

RESUMO

Amber codon suppression for the insertion of non-natural amino acids (nnAAs) is limited by competition with release factor 1 (RF1). Here we describe the genome engineering of a RF1 mutant strain that enhances suppression efficiency during cell-free protein synthesis, without significantly impacting cell growth during biomass production. Specifically, an out membrane protease (OmpT) cleavage site was engineered into the switch loop of RF1, which enables its conditional inactivation during cell lysis. This facilitates extract production without additional processing steps, resulting in a scaleable extract production process. The RF1 mutant extract allows nnAA incorporation at previously intractable sites of an IgG1 and at multiple sites in the same polypeptide chain. Conjugation of cytotoxic agents to these nnAAs, yields homogeneous antibody drug conjugates (ADCs) that can be optimized for conjugation site, drug to antibody ratio (DAR) and linker-warheads designed for efficient tumor killing. This platform provides the means to generate therapeutic ADCs inaccessible by other methods that are efficient in their cytotoxin delivery to tumor with reduced dose-limiting toxicities and thus have the potential for better clinical impact.


Assuntos
Aminoácidos/química , Imunoconjugados , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Engenharia de Proteínas , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Códon de Terminação , Estabilidade de Medicamentos , Humanos , Imunoconjugados/química , Imunoconjugados/isolamento & purificação , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Imunoglobulina G/química , Imunoglobulina G/farmacologia , Espectrometria de Massas , Modelos Moleculares , Mutação , Fatores de Terminação de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Trastuzumab/química , Trastuzumab/farmacologia
12.
Mol Pharm ; 12(6): 1848-62, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25898256

RESUMO

Antibody conjugates are important in many areas of medicine and biological research, and antibody-drug conjugates (ADCs) are becoming an important next generation class of therapeutics for cancer treatment. Early conjugation technologies relied upon random conjugation to multiple amino acid side chains, resulting in heterogeneous mixtures of labeled antibody. Recent studies, however, strongly support the notion that site-specific conjugation produces a homogeneous population of antibody conjugates with improved pharmacologic properties over randomly coupled molecules. Genetically incorporated unnatural amino acids (uAAs) allow unique orthogonal coupling strategies compared to those used for the 20 naturally occurring amino acids. Thus, uAAs provide a novel paradigm for creation of next generation ADCs. Additionally, uAA-based site-specific conjugation could also empower creation of additional multifunctional conjugates important as biopharmaceuticals, diagnostics, or reagents.


Assuntos
Aminoácidos/química , Anticorpos/química , Imunoconjugados/química , Animais , Humanos , Estrutura Secundária de Proteína
13.
Biotechnol Prog ; 31(3): 823-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826247

RESUMO

Cell-free protein synthesis (CFPS) systems allow for robust protein expression with easy manipulation of conditions to improve protein yield and folding. Recent technological developments have significantly increased the productivity and reduced the operating costs of CFPS systems, such that they can compete with conventional in vivo protein production platforms, while also offering new routes for the discovery and production of biotherapeutics. As cell-free systems have evolved, productivity increases have commonly been obtained by addition of components to previously designed reaction mixtures without careful re-examination of the essentiality of reagents from previous generations. Here we present a systematic sensitivity analysis of the components in a conventional Escherichia coli CFPS reaction mixture to evaluate their optimal concentrations for production of the immunoglobulin G trastuzumab. We identify eight changes to the system, which result in optimal expression of trastuzumab. We find that doubling the potassium glutamate concentration, while entirely eliminating pyruvate, coenzyme A, NAD, total tRNA, folinic acid, putrescine and ammonium glutamate, results in a highly productive cell-free system with a 95% reduction in reagent costs (excluding cell-extract, plasmid, and T7 RNA polymerase made in-house). A larger panel of other proteins was also tested and all show equivalent or improved yields with our simplified system. Furthermore, we demonstrate that all of the reagents for CFPS can be combined in a single freeze-thaw stable master mix to improve reliability and ease of use. These improvements are important for the application of the CFPS system in fields such as protein engineering, high-throughput screening, and biotherapeutics.


Assuntos
Escherichia coli/metabolismo , Imunoglobulina G/biossíntese , Biossíntese de Proteínas , Engenharia de Proteínas/métodos , Trastuzumab/biossíntese , Coenzima A/química , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Expressão Gênica , Ácido Glutâmico/química , Imunoglobulina G/genética , Leucovorina/química , NAD/química , Poliaminas/química , Dobramento de Proteína , Putrescina/química , Ácido Pirúvico/química , RNA de Transferência/química , Reprodutibilidade dos Testes , Trastuzumab/genética , Proteínas Virais/química
14.
MAbs ; 7(1): 231-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25427258

RESUMO

Bispecific antibodies have emerged in recent years as a promising field of research for therapies in oncology, inflammable diseases, and infectious diseases. Their capability of dual target recognition allows for novel therapeutic hypothesis to be tested, where traditional mono-specific antibodies would lack the needed mode of target engagement. Among extremely diverse architectures of bispecific antibodies, knobs-into-holes (KIHs) technology, which involves engineering CH3 domains to create either a "knob" or a "hole" in each heavy chain to promote heterodimerization, has been widely applied. Here, we describe the use of a cell-free expression system (Xpress CF) to produce KIH bispecific antibodies in multiple scaffolds, including 2-armed heterodimeric scFv-KIH and one-armed asymmetric BiTE-KIH with tandem scFv. Efficient KIH production can be achieved by manipulating the plasmid ratio between knob and hole, and further improved by addition of prefabricated knob or hole. These studies demonstrate the versatility of Xpress CF in KIH production and provide valuable insights into KIH construct design for better assembly and expression titer.


Assuntos
Anticorpos Biespecíficos/biossíntese , Expressão Gênica , Anticorpos de Cadeia Única/biossíntese , Animais , Anticorpos Biespecíficos/genética , Células CHO , Sistema Livre de Células/metabolismo , Cricetinae , Cricetulus , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Anticorpos de Cadeia Única/genética
15.
Pharm Res ; 32(11): 3480-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25511917

RESUMO

Antibody drug conjugates (ADCs) have progressed from hypothesis to approved therapeutics in less than 30 years, and the technologies available to modify both the antibodies and the cytotoxic drugs are expanding rapidly. For reasons well reviewed previously, the field is trending strongly toward homogeneous, defined antibody conjugation. In this review we present the antibody and small molecule chemistries that are currently used and being explored to develop specific, homogenous ADCs.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/química , Engenharia de Proteínas , Bibliotecas de Moléculas Pequenas/química , Tecnologia Farmacêutica/métodos , Animais , Desenho de Fármacos , Humanos
16.
J Chem Inf Model ; 54(10): 3020-32, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25243907

RESUMO

Protein engineering projects often amass numerous raw DNA sequences, but no readily available software combines sequence processing and activity correlation required for efficient lead identification. XLibraryDisplay is an open source program integrated into Microsoft Excel for Windows that automates batch sequence processing via a simple step-by-step, menu-driven graphical user interface. XLibraryDisplay accepts any DNA template which is used as a basis for trimming, filtering, translating, and aligning hundreds to thousands of sequences (raw, FASTA, or Phred PHD file formats). Key steps for library characterization through lead discovery are available including library composition analysis, filtering by experimental data, graphing and correlating to experimental data, alignment to structural data extracted from PDB files, and generation of PyMOL visualization scripts. Though larger data sets can be handled, the program is best suited for analyzing approximately 10 000 or fewer leads or naïve clones which have been characterized using Sanger sequencing and other experimental approaches. XLibraryDisplay can be downloaded for free from sourceforge.net/projects/xlibrarydisplay/ .


Assuntos
Engenharia de Proteínas/instrumentação , Análise de Sequência de DNA/métodos , Interface Usuário-Computador , Sequência de Bases , Processamento Eletrônico de Dados , Biblioteca Gênica , Humanos , Internet , Dados de Sequência Molecular , Engenharia de Proteínas/métodos , Alinhamento de Sequência , Análise de Sequência de DNA/estatística & dados numéricos
17.
Future Med Chem ; 6(11): 1309-24, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25163001

RESUMO

Antibody-drug conjugates are an important and emerging drug class for the treatment of cancer. Recent evidence strongly suggests that site-specific drug conjugation results in a homogenous population of molecules with more favorable activity and pharmacokinetic properties than randomly conjugated antibodies. Unnatural amino acids (uAAs) can be incorporated in recombinant proteins to enable unique orthogonal chemistries in comparison to the side chains of the natural 20 amino acids. Thus, uAAs present a novel platform for which to create next-generation antibody-drug conjugates. Furthermore, site-specific conjugation through uAAs can also enpower unique small molecule, bispecific, multispecific and other conjugates that could be important constructs for therapeutics, diagnostics and research reagents. Here, we review the progress in uAA incorporation and conjugate construction through both cell-based and -free approaches.


Assuntos
Aminoácidos/química , Anticorpos/química , Imunoconjugados/química , Animais , Humanos
18.
Protein Eng Des Sel ; 27(4): 97-109, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24586053

RESUMO

Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Sistema Livre de Células , Fragmentos Fab das Imunoglobulinas , Biblioteca de Peptídeos , Anticorpos/genética , Anticorpos Monoclonais Humanizados/genética , Antígeno Carcinoembrionário/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Imunoglobulina G/genética , Trastuzumab , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
MAbs ; 6(3): 671-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24517929

RESUMO

Antibodies are well-established as therapeutics, and the preclinical and clinical pipeline of these important biologics is growing rapidly. Consequently, there is considerable interest in technologies to engineer and manufacture them. Mammalian cell culture is commonly used for production because eukaryotic expression systems have evolved complex and efficient chaperone systems for the folding of antibodies. However, given the ease and manipulability of bacteria, antibody discovery efforts often employ bacterial expression systems despite their limitations in generating high titers of functional antibody. Open-Cell Free Synthesis (OCFS) is a coupled transcription-translation system that has the advantages of prokaryotic systems while achieving high titers of antibody expression. Due to the open nature of OCFS, it is easily modified by chemical or protein additives to improve the folding of select proteins. As such, we undertook a protein additive screen to identify chaperone proteins that improve the folding and assembly of trastuzumab in OCFS. From the screen, we identified the disulfide isomerase DsbC and the prolyl isomerase FkpA as important positive effectors of IgG folding. These periplasmic chaperones function synergistically for the folding and assembly of IgG, and, when present in sufficient quantities, gram per liter IgG titers can be produced. This technological advancement allows the rapid development and manufacturing of immunoglobulin proteins and pushes OCFS to the forefront of production technologies for biologics.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Imunoglobulinas/biossíntese , Imunoglobulinas/genética , Chaperonas Moleculares/metabolismo , Anticorpos Monoclonais Humanizados/biossíntese , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Biotecnologia , Sistema Livre de Células , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulinas/química , Chaperonas Moleculares/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Engenharia de Proteínas , Dobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Trastuzumab
20.
Bioconjug Chem ; 25(2): 351-61, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24437342

RESUMO

Antibody-drug conjugates (ADCs) are a targeted chemotherapeutic currently at the cutting edge of oncology medicine. These hybrid molecules consist of a tumor antigen-specific antibody coupled to a chemotherapeutic small molecule. Through targeted delivery of potent cytotoxins, ADCs exhibit improved therapeutic index and enhanced efficacy relative to traditional chemotherapies and monoclonal antibody therapies. The currently FDA-approved ADCs, Kadcyla (Immunogen/Roche) and Adcetris (Seattle Genetics), are produced by conjugation to surface-exposed lysines, or partial disulfide reduction and conjugation to free cysteines, respectively. These stochastic modes of conjugation lead to heterogeneous drug products with varied numbers of drugs conjugated across several possible sites. As a consequence, the field has limited understanding of the relationships between the site and extent of drug loading and ADC attributes such as efficacy, safety, pharmacokinetics, and immunogenicity. A robust platform for rapid production of ADCs with defined and uniform sites of drug conjugation would enable such studies. We have established a cell-free protein expression system for production of antibody drug conjugates through site-specific incorporation of the optimized non-natural amino acid, para-azidomethyl-l-phenylalanine (pAMF). By using our cell-free protein synthesis platform to directly screen a library of aaRS variants, we have discovered a novel variant of the Methanococcus jannaschii tyrosyl tRNA synthetase (TyrRS), with a high activity and specificity toward pAMF. We demonstrate that site-specific incorporation of pAMF facilitates near complete conjugation of a DBCO-PEG-monomethyl auristatin (DBCO-PEG-MMAF) drug to the tumor-specific, Her2-binding IgG Trastuzumab using strain-promoted azide-alkyne cycloaddition (SPAAC) copper-free click chemistry. The resultant ADCs proved highly potent in in vitro cell cytotoxicity assays.


Assuntos
Aminoácidos/química , Imunoconjugados/química , Linhagem Celular , Sistema Livre de Células , Cromatografia Líquida , Ensaios de Triagem em Larga Escala , Humanos , Imunoconjugados/farmacologia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA